Third Body Perturbations of Double Stars

Author(s):  
Rudolf Dvorak
Keyword(s):  
1965 ◽  
Vol 5 ◽  
pp. 109-111
Author(s):  
Frederick R. West

There are certain visual double stars which, when close to a node of their relative orbit, should have enough radial velocity difference (10-20 km/s) that the spectra of the two component stars will appear resolved on high-dispersion spectrograms (5 Å/mm or less) obtainable by use of modern coudé and solar spectrographs on bright stars. Both star images are then recorded simultaneously on the spectrograph slit, so that two stellar components will appear on each spectrogram.


1965 ◽  
Vol 5 ◽  
pp. 28-37
Author(s):  
R. Edward Nather ◽  
David S. Evans

When a star is occulted by the dark limb of the Moon its apparent intensity drops to zero very quickly. MacMahon (1909) proposed that the time of disappearance would measure the diameter of the star, but Eddington (1909) demonstrated that diffraction effects at the lunar limb would lengthen the apparent time of disappearance to about 20 msec, and suggested that these effects would greatly limit the usefulness of the technique. MacMahon’s paper indicates that he was aware that stellar duplicity could be detected from occultation observations, but he did not amplify the point and Eddington did not comment on it. While it has been demonstrated theoretically by Williams (1939) and experimentally by Whitford (1939) and others that stellar diameters of a few arcmsec can be measured by this technique, its use for the discovery and measurement of double stars has been only incidental to other programs (O’Keefe and Anderson, 1952; Evanset al., 1954). Properly exploited, the method can contribute materially to the study of double stars.


2021 ◽  
Vol 133 (3) ◽  
Author(s):  
Marilena Di Carlo ◽  
Simão da Graça Marto ◽  
Massimiliano Vasile

AbstractThis paper presents a collection of analytical formulae that can be used in the long-term propagation of the motion of a spacecraft subject to low-thrust acceleration and orbital perturbations. The paper considers accelerations due to: a low-thrust profile following an inverse square law, gravity perturbations due to the central body gravity field and the third-body gravitational perturbation. The analytical formulae are expressed in terms of non-singular equinoctial elements. The formulae for the third-body gravitational perturbation have been obtained starting from equations for the third-body potential already available in the literature. However, the final analytical formulae for the variation of the equinoctial orbital elements are a novel derivation. The results are validated, for different orbital regimes, using high-precision numerical orbit propagators.


Wear ◽  
2021 ◽  
pp. 203753
Author(s):  
Manon Isard ◽  
Imène Lahouij ◽  
Jean-Michel Lanot ◽  
Pierre Montmitonnet

2020 ◽  
Vol 29 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Fatemeh Davoudi ◽  
Atila Poro ◽  
Fahri Alicavus ◽  
Afshin Halavati ◽  
Saeed Doostmohammadi ◽  
...  

AbstractNew observations of the eclipsing binary system V1848 Ori were carried out using the V filter resulting in a determination of new times of minima and new ephemeris were obtained. We presented the first complete analysis of the system’s orbital period behavior and analysis of O-C diagram done by the GA and MCMC approaches in OCFit code. The O-C diagram demonstrates a sinusoidal trend in the data; this trend suggests a cyclic change caused by the LITE effect with a period of 10.57 years and an amplitude of 7.182 minutes. It appears that there is a third body with mass function of f (m3) = 0.0058 M⊙ in this binary system. The light curves were analyzed using the Wilson-Devinney code to determine some geometrical and physical parameters of the system. These results show that V1848 Ori is a contact W UMa binary system with the mass ratio of q = 0.76 and a weak fillout factor of 5.8%. The O’Connell effect was not seen in the light curve and there is no need to add spot.


1992 ◽  
Vol 135 ◽  
pp. 521-526
Author(s):  
John Davis

AbstractThe Sydney University Stellar Interferometer (SUSI) is currently undergoing commissioning and will soon commence its astronomical program in which observations of double stars will form a major component. With its 640-m long North–South array of input siderostats, the new instrument will have unprecedented angular resolution.


Sign in / Sign up

Export Citation Format

Share Document