high dispersion
Recently Published Documents


TOTAL DOCUMENTS

1050
(FIVE YEARS 245)

H-INDEX

48
(FIVE YEARS 9)

Fuel ◽  
2022 ◽  
Vol 310 ◽  
pp. 122276
Author(s):  
Lei Sun ◽  
Yuanyuan Meng ◽  
Xinxin Kong ◽  
Huiyun Ge ◽  
Xingman Chen ◽  
...  

2022 ◽  
Vol 163 (2) ◽  
pp. 63
Author(s):  
Taro Matsuo ◽  
Thomas P. Greene ◽  
Mahdi Qezlou ◽  
Simeon Bird ◽  
Kiyotomo Ichiki ◽  
...  

Abstract The direct measurement of the universe’s expansion history and the search for terrestrial planets in habitable zones around solar-type stars require extremely high-precision radial-velocity measures over a decade. This study proposes an approach for enabling high-precision radial-velocity measurements from space. The concept presents a combination of a high-dispersion densified pupil spectrograph and a novel line-of-sight monitor for telescopes. The precision of the radial-velocity measurements is determined by combining the spectrophotometric accuracy and the quality of the absorption lines in the recorded spectrum. Therefore, a highly dispersive densified pupil spectrograph proposed to perform stable spectroscopy can be utilized for high-precision radial-velocity measures. A concept involving the telescope’s line-of-sight monitor is developed to minimize the change of the telescope’s line of sight over a decade. This monitor allows the precise measurement of long-term telescope drift without any significant impact on the Airy disk when the densified pupil spectra are recorded. We analytically derive the uncertainty of the radial-velocity measurements, which is caused by the residual offset of the lines of sight at two epochs. We find that the error could be reduced down to approximately 1 cm s−1, and the precision will be limited by another factor (e.g., wavelength calibration uncertainty). A combination of the high-precision spectrophotometry and the high spectral resolving power could open a new path toward the characterization of nearby non-transiting habitable planet candidates orbiting late-type stars. We present two simple and compact highly dispersed densified pupil spectrograph designs for cosmology and exoplanet sciences.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 145
Author(s):  
Yiwei Luo ◽  
Yonglong Li ◽  
Conghui Wang ◽  
Jing Wang ◽  
Wenming Liu ◽  
...  

Copper catalysts have been extensively studied for CO oxidation at low temperatures. Previous findings on the stability of such catalysts, on the other hand, revealed that they deactivated badly under extreme circumstances. Therefore, in this work, a series of KCC−1-supported copper oxide catalysts were successfully prepared by impregnation method, of which 5% CuO/KCC−1 exhibited the best activity: CO could be completely converted at 120 °C. The 5% CuO/KCC−1 catalyst exhibited better thermal stability, which is mainly attributed to the large specific surface area of KCC−1 that facilitates the high dispersion of CuO species, and because the dendritic layered walls can lengthen the movement distances from particle-to-particle, thus helping to slow down the tendency of active components to sinter. In addition, the 5% CuO/KCC−1 has abundant mesoporous and surface active oxygen species, which are beneficial to the mass transfer and promote the adsorption of CO and the decomposition of Cu+–CO species, thus improving the CO oxidation performance of the catalyst.


Author(s):  
Leonid I. Dvorkin ◽  
Vadim Zhitkovsky ◽  
Nataliya Lushnikova ◽  
Mohammed Sonebi

Composite admixtures which include active pozzolanic components and high-range water reducers, allows to obtain high-strength, particularly dense and durable concrete to achieve a reduction in resources and energy consumption of manufacturing.Zeolite, containing a significant amount of active silica, can serve as one of the alternative substances to resources and energy consuming mineral admixtures like metakaolin and silica fume. The deposits of zeolites are developed in Transcarpathia (Ukraine), USA, Japan, New Zealand, Iceland and other countries. It is known that zeolite tuffs exhibit pozzolanic properties and are capable to substitution reactions with calcium hydroxide.However, the high dispersion of zeolite rocks leads to a significant increase in the water consumption of concrete. Simultaneous introduction of zeolite tuffs with superplasticizers, which significantly reduce the water content, creates the preconditions for their effective use in high-strength concrete.Along with dehydrated (calcined) zeolite, natural (non-calcined) zeolite expresses itself as an effective mineral admixture of concrete. When using non-calcined zeolite, the effect of increasing in compressive strength at the age of 3 and 7 days is close to the effect obtained when using dehydrated zeolite: 8-10% and 10- 12%, respectively, and 28 days the strength growth is 13-22%. The use of non-calcined zeolite has a significant economic feasibility, so it certainly deserves attention. There were compared the effect of zeolite to metakaolinThe results of the research indicate that the use of composite admixtures, consisted of calcined (non-calcined) zeolite tuff of high dispersity and superplasticizer of naphthalene formaldehyde type, allows to obtain concretes classes C50…C65.


2022 ◽  
Vol 964 (1) ◽  
pp. 012027
Author(s):  
Luu Trung Thien ◽  
Le Nguyen Quang Tu ◽  
Bien Cong Trung ◽  
Nguyen Quang Long

Abstract Eggshell, which is made almost entirely of calcium carbonate, is among the most abundant waste materials from poultry production. In 2018, the worldwide egg production exceeded 78 million metric tons which contributed to over 8 million metric tons of eggshell waste. However, this waste can be converted into useful materials for several industrial applications. Herein, hydroxyapatite (HAp) of fine particles was prepared using a green synthesis procedure in water medium from eggshell waste. Then, HAp was utilized as support material for loading different contents of Au nanoparticles (0.2 and 0.5 wt%). The materials were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), X-ray diffraction (XRD). The prepared catalysts were used for VOCs oxidation of formaldehyde in continuous flow and humid condition. In this study, Au/HAp (0.2 wt%) exhibited superior catalytic activity with good low-temperature reproducibility and high dispersion of particles on the surface of hydroxyapatite. Hence, hydroxyapatite prepared from eggshell waste is considered as a promising support material for noble metal catalysts for VOCs oxidation.


Author(s):  
M. P. Yutkin ◽  
C. J. Radke ◽  
T. W. Patzek

AbstractModified or low-salinity waterflooding of carbonate oil reservoirs is of considerable economic interest because of potentially inexpensive incremental oil production. The injected modified brine changes the surface chemistry of the carbonate rock and crude oil interfaces and detaches some of adhered crude oil. Composition design of brine modified to enhance oil recovery is determined by labor-intensive trial-and-error laboratory corefloods. Unfortunately, limestone, which predominantly consists of aqueous-reactive calcium carbonate, alters injected brine composition by mineral dissolution/precipitation. Accordingly, the rock reactivity hinders rational design of brines tailored to improve oil recovery. Previously, we presented a theoretical analysis of 1D, single-phase brine injection into calcium carbonate-rock that accounts for mineral dissolution, ion exchange, and dispersion (Yutkin et al. in SPE J 23(01):084–101, 2018. 10.2118/182829-PA). Here, we present the results of single-phase waterflood-brine experiments that verify the theoretical framework. We show that concentration histories eluted from Indiana limestone cores possess features characteristic of fast calcium carbonate dissolution, 2:1 ion exchange, and high dispersion. The injected brine reaches chemical equilibrium inside the porous rock even at injection rates higher than 3.5 $$\times$$ × 10$$^{-3}$$ - 3  m s$$^{-1}$$ - 1 (1000 ft/day). Ion exchange results in salinity waves observed experimentally, while high dispersion is responsible for long concentration history tails. Using the verified theoretical framework, we briefly explore how these processes modify aqueous-phase composition during the injection of designer brines into a calcium-carbonate reservoir. Because of high salinity of the initial and injected brines, ion exchange affects injected concentrations only in high surface area carbonates/limestones, such as chalks. Calcium-carbonate dissolution only affects aqueous solution pH. The rock surface composition is affected by all processes.


2021 ◽  
Vol 14 (2) ◽  
pp. 137-140
Author(s):  
Ajit Kumar Sah ◽  
Anish Giri ◽  
Anjan Palikhey ◽  
Roshan Kumar Chaurasiya ◽  
Phoolgen Sah ◽  
...  

Introduction: High dispersion in price of injectable antibiotics makes choice of drugs difficult for the patients and increase economic burden. Thus, objective of this study is to find outrange of price variation of injectable antibiotics commonly used in Bharatpur, Chitwan. Methods: Descriptive observational study of 30 commonly used injectable antibiotics available in medical stores of Bharatpur, Chitwan was done. Range in price variation of the study items of different pharmaceutical companies was calculated in terms of price percentage difference and price ratio by selecting the highest and lowest price. The effect of rise in number of companies for the same drugs over the prices was also studied subjectively based upon graph. Results: We found that the price percentage difference was greatest (204.82%) for Ceftriaxone 500 mg. The maximum retail price (MRP) of the most expensive brand for Ceftriaxone 500 mg was almost three-fold higher than the MRP of the least expensive brand. The growing number of companies also increased dispersion in the price of drugs. Conclusions: There is wide range of price variation of injectable antibiotic commonly used in the Bharatpur, Chitwan. Increasing number of companies in the market has further widened the range. Policy to regulate the price of injectable antibiotic is needed.


Agro-Science ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 103-113
Author(s):  
C.B. Okebalama ◽  
C.A. Igwe ◽  
A.O. Onunwa

Soil organic carbon (SOC) and total soil nitrogen (TSN) dynamics have both pedological and agronomic basis. Knowledge of their retention within aggregate hierarchies of varying soil textures as influenced by land use change is limited. The capacity of loam (L), clay loam (CL), sandy loam (SL) and sandy clay loam (SCL) soils to retain SOC and TSN in water-stable aggregate (WSA) at 10-cm intervals of 0-30 cm topsoil depths under cultivated and bushfallow/ uncultivated systems was investigated. The soils showed high dispersion ratio and great variations in aggregate silt and clay indices (CL > L > SCL > SL) under both land uses. Across soil depths, the uncultivated CL, SL and SCL soils had moderate to high > 2.00 mm WSA whose reduction due to cultivation impact was more pronounced in SL than in CL soil. Across soil depths and land uses, SOC content seemed higher in the macro- (> 0.50 mm) than in the micro- (< 0.50 mm) aggregates of all the soils while the reverse marked aggregate TSN content in almost all the soils. Cultivation mostly reduced macro-aggregate-associated SOC and TSN in L > CL > SL and in L > SL > CL > SCL soils, respectively. However, cultivation showed no reduction influence on micro-aggregate-associated SOC of all the soils. Cultivation-related reduction in micro-aggregate-associated TSN was more pronounced in the generally more ‘clayey’ CL and SCL than the L and SL soils. So, the potential of bush-fallowing to enhance micro-aggregateassociated TSN storage and stabilization against adverse influence of cultivation depends on soil texture.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 33
Author(s):  
Yulin Li ◽  
Ping She ◽  
Rundong Ding ◽  
Da Li ◽  
Hongtan Cai ◽  
...  

Polyacrylonitrile hollow nanospheres (HPAN), derived from the polymerization of acrylonitrile in the presence of polystyrene emulsion (as template), were modified by surface amination with ethylenediamine (EDA), and then used as support for loading Pd or PdCo nanoparticles (NPs). The resultant bimetallic catalyst (named PdCo0.2/EDA-HPAN) can efficiently catalyze the additive-free dehydrogenation of formic acid with very high activity, selectivity and recyclability, showing turnover frequencies (TOF) of 4990 h−1 at 333 K and 915 h−1 at 303 K, respectively. The abundant surface amino groups and cyano group as well as the hollow structure of the support offer a suitable environment for achieving high dispersion of the Pd-based NPs on the surface of EDA-HPAN, thus generating ultra-small bimetallic NPs (bellow 1.0 nm) with high stability. The addition of a small portion of Co may adjust the electronic state of Pd species to a certain extent, which can further improve their capability for the dehydrogenation of formic acid. In addition, the surface amino groups may also play an important role in synergistically activating formic acid to generate formate, thus leading to efficient conversion of formic acid to hydrogen at mild conditions.


2021 ◽  
Vol 5 (12) ◽  
pp. 284
Author(s):  
Richard Monier

Abstract Comparison of high dispersion LWP spectra obtained in 24 hr of monitoring of 21 Com with IUE in April 1991 reveals variations of low excitation Fe ii lines at phase 0.65 of the rotational period (FUV minimum flux) compared to phase 0.18 (FUV maximum flux). All 10 Fe ii lines of UV Multiplets 1 and 62 are consistently stronger at phase 0.65, which shows that the FUV flux minimum can be partially explained to an increase of the disk averaged iron abundance. In contrast, comparison of optical high resolution high signal-to-noise ELODIE spectra of 21 Com taken in 2004 April and separated by about half of the 2 days rotational period, reveals no significant variations of the Fe ii and Fe i lines. The lines monitored in the mid UV are strong low-lying transitions which are probably more sensitive to small abundance gradients over the surface of 21 Com.


Sign in / Sign up

Export Citation Format

Share Document