Möbius Tramsformations and Clifford Algebras of Euclidean and Anti-Euclidean Spaces

Author(s):  
Pertti Lounesto ◽  
Arthur Springer
Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 616
Author(s):  
Michel Petitjean

We emphasize the differences between the chirality concept applied to relativistic fermions and the ususal chirality concept in Euclidean spaces. We introduce the gamma groups and we use them to classify as direct or indirect the symmetry operators encountered in the context of Dirac algebra. Then we show how a recent general mathematical definition of chirality unifies the chirality concepts and resolve conflicting conclusions about symmetry operators, and particularly about the so-called chirality operator. The proofs are based on group theory rather than on Clifford algebras. The results are independent on the representations of Dirac gamma matrices, and stand for higher dimensional ones.


2020 ◽  
Vol 17 (3) ◽  
pp. 365-371
Author(s):  
Anatoliy Pogorui ◽  
Tamila Kolomiiets

This paper deals with studying some properties of a monogenic function defined on a vector space with values in the Clifford algebra generated by the space. We provide some expansions of a monogenic function and consider its application to study solutions of second-order partial differential equations.


2020 ◽  
Vol 13 (5) ◽  
pp. 871-878
Author(s):  
Richard G. Chandler ◽  
Nicholas Engel
Keyword(s):  

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Carlos Daniel Tamayo-Castro ◽  
Ricardo Abreu-Blaya ◽  
Juan Bory-Reyes

Author(s):  
Peng Lu ◽  
Jiuru Zhou

AbstractWe construct the ancient solutions of the hypersurface flows in Euclidean spaces studied by B. Andrews in 1994.As time {t\rightarrow 0^{-}} the solutions collapse to a round point where 0 is the singular time. But as {t\rightarrow-\infty} the solutions become more and more oval. Near the center the appropriately-rescaled pointed Cheeger–Gromov limits are round cylinder solutions {S^{J}\times\mathbb{R}^{n-J}}, {1\leq J\leq n-1}. These results are the analog of the corresponding results in Ricci flow ({J=n-1}) and mean curvature flow.


2016 ◽  
Vol 138 ◽  
pp. 208-235 ◽  
Author(s):  
Gary Greaves ◽  
Jacobus H. Koolen ◽  
Akihiro Munemasa ◽  
Ferenc Szöllősi

Sign in / Sign up

Export Citation Format

Share Document