dirac algebra
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 31 (4) ◽  
Author(s):  
Robert Arnott Wilson

AbstractClifford algebras are used for constructing spin groups, and are therefore of particular importance in the theory of quantum mechanics. An algebraist’s perspective on the many subgroups and subalgebras of Clifford algebras may suggest ways in which they might be applied more widely to describe the fundamental properties of matter. I do not claim to build a physical theory on top of the fundamental algebra, and my suggestions for possible physical interpretations are indicative only, and may not work. Nevertheless, both the existence of three generations of fermions and the symmetry-breaking of the weak interaction seem to emerge naturally from an extension of the Dirac algebra from complex numbers to quaternions.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Alberto Escalante ◽  
Jorge Hernández Aguilar

AbstractA detailed Gitman–Lyakhovich–Tyutin analysis for higher-order topologically massive gravity is performed. The full structure of the constraints, the counting of physical degrees of freedom, and the Dirac algebra among the constraints are reported. Moreover, our analysis presents a new structure into the constraints and we compare our results with those reported in the literature where a standard Ostrogradski framework was developed.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1117
Author(s):  
Martin B. van der Mark ◽  
John G. Williamson

A general formula for inversion in a relativistic Clifford–Dirac algebra has been derived. Identifying the base elements of the algebra as those of space and time, the first order differential equations over all quantities proves to encompass the Maxwell equations, leads to a natural extension incorporating rest mass and spin, and allows an integration with relativistic quantum mechanics. Although the algebra is not a division algebra, it parallels reality well: where division is undefined turns out to correspond to physical limits, such as that of the light cone. The divisor corresponds to invariants of dynamical significance, such as the invariant interval, the general invariant quantities in electromagnetism, and the basis set of quantities in the Dirac equation. It is speculated that the apparent 3-dimensionality of nature arises from a beautiful symmetry between the three-vector algebra and each of four sets of three derived spaces in the full 4-dimensional algebra. It is conjectured that elements of inversion may play a role in the interaction of fields and matter.


2021 ◽  
Author(s):  
Filiz Çağatay Uçgun
Keyword(s):  

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 616
Author(s):  
Michel Petitjean

We emphasize the differences between the chirality concept applied to relativistic fermions and the ususal chirality concept in Euclidean spaces. We introduce the gamma groups and we use them to classify as direct or indirect the symmetry operators encountered in the context of Dirac algebra. Then we show how a recent general mathematical definition of chirality unifies the chirality concepts and resolve conflicting conclusions about symmetry operators, and particularly about the so-called chirality operator. The proofs are based on group theory rather than on Clifford algebras. The results are independent on the representations of Dirac gamma matrices, and stand for higher dimensional ones.


2019 ◽  
Author(s):  
Rainer Kühne

I examine the groups which underly classical mechanics, non-relativistic quantum mechanics, special relativity, relativistic quantum mechanics, quantum electrodynamics, quantum flavourdynamics, quantum chromodynamics, and general relativity. This examination includes the rotations SO(2) and SO(3), the Pauli algebra, the Lorentz transformations, the Dirac algebra, and the U(1), SU(2), and SU(3) gauge transformations. I argue that general relativity must be generalized to Einstein-Cartan theory, so that Dirac spinors can be described within the framework of gravitation theory.


2018 ◽  
Vol 65 (1) ◽  
pp. 65 ◽  
Author(s):  
Shahen Hacyan

It is shown that the Riemann-Silberstein vector, defined as ${\bf E} + i{\bf B}$, appears naturally in the $SL(2,C)$ algebraic representation of the electromagnetic field. Accordingly, a compact form of the Maxwell equations is obtained in terms of Dirac matrices, in combination with the null-tetrad formulation of general relativity. The formalism is fully covariant; an explicit form of the covariant derivatives is presented in terms of the Fock coefficients.


Author(s):  
Rainer Kühne

I examine the groups which underly classical mechanics, non-relativistic quantum mechanics, special relativity, relativistic quantum mechanics, quantum electrodynamics, quantum flavourdynamics, quantum chromodynamics, and general relativity. This examination includes the rotations SO(2) and SO(3), the Pauli algebra, the Lorentz transformations, the Dirac algebra, and the U(1), SU(2), and SU(3) gauge transformations. I argue that general relativity must be generalized to Einstein-Cartan theory, so that Dirac spinors can be described within the framework of gravitation theory.


Sign in / Sign up

Export Citation Format

Share Document