Multiphase Flow in Fractured Reservoirs

Author(s):  
Ole Torsaeter ◽  
Jon Kleppe ◽  
Teodor Golf-Racht
SPE Journal ◽  
2006 ◽  
Vol 11 (03) ◽  
pp. 328-340 ◽  
Author(s):  
Pallav Sarma ◽  
Khalid Aziz

Summary This paper discusses new techniques for the modeling and simulation of naturally fractured reservoirs with dual-porosity models. Most of the existing dual-porosity models idealize matrix-fracture interaction by assuming orthogonal fracture systems (parallelepiped matrix blocks) and pseudo-steady state flow. More importantly, a direct generalization of single-phase flow equations is used to model multiphase flow, which can lead to significant inaccuracies in multiphase flow-behavior predictions. In this work, many of these existing limitations are removed in order to arrive at a transfer function more representative of real reservoirs. Firstly, combining the differential form of the single-phase transfer function with analytical solutions of the pressure-diffusion equation, an analytical form for a shape factor for transient pressure diffusion is derived to corroborate its time dependence. Further, a pseudosteady shape factor for rhombic fracture systems is also derived and its effect on matrix-fracture mass transfer demonstrated. Finally, a general numerical technique to calculate the shape factor for any arbitrary shape of the matrix block (i.e., nonorthogonal fractures) is proposed. This technique also accounts for both transient and pseudosteady-state pressure behavior. The results were verified against fine-grid single-porosity models and were found to be in excellent agreement. Secondly, it is shown that the current form of the transfer function used in reservoir simulators does not fully account for the main mechanisms governing multiphase flow. A complete definition of the differential form of the transfer function for two-phase flow is derived and combined with the governing equations for pressure and saturation diffusion to arrive at a modified form of the transfer function for two-phase flow. The new transfer function accurately takes into account pressure diffusion (fluid expansion) and saturation diffusion (imbibition), which are the two main mechanisms driving multiphase matrix-fracture mass transfer. New shape factors for saturation diffusion are defined. It is shown that the prediction of wetting-phase imbibition using the current form of the transfer function can be quite inaccurate, which might have significant consequences from the perspective of reservoir management. Fine-grid single-porosity models are used to verify the validity of the new transfer function. The results from single-block dual-porosity models and the corresponding single-porosity fine-grid models were in good agreement. Introduction A naturally fractured reservoir (NFR) can be defined as a reservoir that contains a connected network of fractures (planar discontinuities) created by natural processes such as diastrophism and volume shrinkage (Ordonez et al. 2001). Fractured petroleum reservoirs represent over 20% of the world's oil and gas reserves (Saidi 1983), but are, however, among the most complicated class of reservoirs. A typical example is the Circle Ridge fractured reservoir located on the Wind River Reservation in Wyoming, U.S.. This reservoir has been in production for more than 50 years but the total oil recovery until now has been less than 15% (www.fracturedreservoirs.com 2000). It is undeniable that reservoir characterization, modeling, and simulation of naturally fractured reservoirs present unique challenges that differentiate them from conventional, single-porosity reservoirs. Not only do the intrinsic characteristics of the fractures, as well as the matrix, have to be characterized, but the interaction between matrix blocks and surrounding fractures must also be modeled accurately. Further, most of the major NFRs have active aquifers associated with them, or would eventually be subjected to some kind of secondary recovery process such as waterflooding (German 2002), implying that it is essential to have a good understanding of the physics of multiphase flow for such reservoirs. This complexity of naturally fractured reservoirs necessitates the need for their accurate representation from a modeling and simulation perspective, such that production and recovery from such reservoirs be predicted and optimized.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 812 ◽  
Author(s):  
Zhenzhen Dong ◽  
Weirong Li ◽  
Gang Lei ◽  
Huijie Wang ◽  
Cai Wang

Fractured reservoirs are distributed widely over the world, and describing fluid flow in fractures is an important and challenging topic in research. Discrete fracture modeling (DFM) and equivalent continuum modeling are two principal methods used to model fluid flow through fractured rocks. In this paper, a novel method, embedded discrete fracture modeling (EDFM), is developed to compute equivalent permeability in fractured reservoirs. This paper begins with an introduction on EDFM. Then, the paper describes an upscaling procedure to calculate equivalent permeability. Following this, the paper carries out a series of simulations to compare the computation cost between DFM and EDFM. In addition, the method is verified by embedded discrete fracture modeling and fine grid methods, and grid-block and multiphase flow are studied to prove the feasibility of the method. Finally, the upscaling procedure is applied to a three-dimensional case in order to study performance for a gas injection problem. This study is the first to use embedded discrete fracture modeling to compute equivalent permeability for fractured reservoirs. This paper also provides a detailed comparison and discussion on embedded discrete fracture modeling and discrete fracture modeling in the context of equivalent permeability computation with a single-phase model. Most importantly, this study addresses whether this novel method can be used in multiphase flow in a reservoir with fractures.


2013 ◽  
Vol 16 (02) ◽  
pp. 194-208 ◽  
Author(s):  
S.. Jonoud ◽  
O.P.. P. Wennberg ◽  
G.. Casini ◽  
J.A.. A. Larsen

Summary Carbonate fractured reservoirs introduce a tremendous challenge to the upscaling of both single- and multiphase flow. The complexity comes from both heterogeneous matrix and fracture systems in which the separation of scales is very difficult. The mathematical upscaling techniques, derived from representative elementary volume (REV), must therefore be replaced by a more realistic geology-based approach. In the case of multiphase flow, an evaluation of the main forces acting during oil recovery must also be performed. A matrix-sector model from a highly heterogeneous carbonate reservoir is linked to different fracture realizations in dual-continuum simulations. An integrated iterative workflow between the geology-based static modeling and the dynamic simulations is used to investigate the effect of fracture heterogeneity on multiphase fluid flow. Heterogeneities at various scales (i.e., diffuse fractures and subseismic faults) are considered. The diffuse-fracture model is built on the basis of facies and porosity from the matrix model together with core data, image-log data, and data from outcrop-analogs. Because of poor seismic data, the subseismic-fault model is mainly conceptual and is based on the analysis of outcrop-analog data. Fluid-flow simulations are run for both single-phase and multiphase flow and gas and water injections. A better understanding of fractured-reservoirs behavior is achieved by incorporating realistic fracture heterogeneity into the geological model and analyzing the dynamic impact of fractures at various scales. In the case of diffuse fractures, the heterogeneity effect can be captured in the upscaled model. The subseismic faults, however, must be explicitly represented, unless the sigma (shape) factor is included in the upscaling process. A local grid-refinement approach is applied to demonstrate explicit fractures in large-scale simulation grids. This study provides guidelines on how to effectively scale up a heterogeneous fracture model and still capture the heterogeneous flow behavior.


Sign in / Sign up

Export Citation Format

Share Document