Reflection Nebulae, Non-Equilibrium Thermal Emission, and IRAS

Author(s):  
K. Sellgren ◽  
L. J. Allamandola ◽  
J. D. Bregman ◽  
M. W. Werner ◽  
D. H. Wooden
1989 ◽  
Vol 131 ◽  
pp. 195-195
Author(s):  
D. Middlemass ◽  
R.E.S. Clegg ◽  
J. R. Walsh

We have observed the large, faint halos around NGC 6543 and NGC 6826 with the Isaac Newton Telescope, using IPCS and CCD (2-dimensional) detectors. Line intensities are measured every 1.5 arcsec over a total slit length of 3 arcmin (IPCS) or 2 arcmin (CCD). Several slit positions across the halos were observed, so as to obtain average properties of these two regions. Halo spectra are compared with spectra of the bright core, so as to distinguish between reflection by dust and genuine thermal emission; the halos are not reflection nebulae.


Author(s):  
Edward A Kenik

Segregation of solute atoms to grain boundaries, dislocations, and other extended defects can occur under thermal equilibrium or non-equilibrium conditions, such as quenching, irradiation, or precipitation. Generally, equilibrium segregation is narrow (near monolayer coverage at planar defects), whereas non-equilibrium segregation exhibits profiles of larger spatial extent, associated with diffusion of point defects or solute atoms. Analytical electron microscopy provides tools both to measure the segregation and to characterize the defect at which the segregation occurs. This is especially true of instruments that can achieve fine (<2 nm width), high current probes and as such, provide high spatial resolution analysis and characterization capability. Analysis was performed in a Philips EM400T/FEG operated in the scanning transmission mode with a probe diameter of <2 nm (FWTM). The instrument is equipped with EDAX 9100/70 energy dispersive X-ray spectrometry (EDXS) and Gatan 666 parallel detection electron energy loss spectrometry (PEELS) systems. A double-tilt, liquid-nitrogen-cooled specimen holder was employed for microanalysis in order to minimize contamination under the focussed spot.


Author(s):  
W. T. Pike

With the advent of crystal growth techniques which enable device structure control at the atomic level has arrived a need to determine the crystal structure at a commensurate scale. In particular, in epitaxial lattice mismatched multilayers, it is of prime importance to know the lattice parameter, and hence strain, in individual layers in order to explain the novel electronic behavior of such structures. In this work higher order Laue zone (holz) lines in the convergent beam microdiffraction patterns from a thermal emission transmission electron microscope (TEM) have been used to measure lattice parameters to an accuracy of a few parts in a thousand from nanometer areas of material.Although the use of CBM to measure strain using a dedicated field emission scanning transmission electron microscope has already been demonstrated, the recording of the diffraction pattern at the required resolution involves specialized instrumentation. In this work, a Topcon 002B TEM with a thermal emission source with condenser-objective (CO) electron optics is used.


Author(s):  
Michel Le Bellac ◽  
Fabrice Mortessagne ◽  
G. George Batrouni

1978 ◽  
Vol 39 (C6) ◽  
pp. C6-541-C6-542
Author(s):  
B. Pannetier ◽  
J. P. Maneval

1978 ◽  
Vol 39 (C6) ◽  
pp. C6-500-C6-502 ◽  
Author(s):  
J. Bindslev Hansen ◽  
P. Jespersen ◽  
P. E. Lindelof
Keyword(s):  

1979 ◽  
Vol 40 (C7) ◽  
pp. C7-871-C7-872
Author(s):  
E. F. Gippius ◽  
B. I. Iljukhin ◽  
V. N. Kolesnikov

Sign in / Sign up

Export Citation Format

Share Document