isaac newton telescope
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 923 (2) ◽  
pp. 164
Author(s):  
Elham Saremi ◽  
Atefeh Javadi ◽  
Mahdieh Navabi ◽  
Jacco Th. van Loon ◽  
Habib G. Khosroshahi ◽  
...  

Abstract An optical monitoring survey in the nearby dwarf galaxies was carried out with the 2.5 m Isaac Newton Telescope. 55 dwarf galaxies and four isolated globular clusters in the Local Group were observed with the Wide Field Camera. The main aims of this survey are to identify the most evolved asymptotic giant branch stars and red supergiants at the endpoint of their evolution based on their pulsational instability, use their distribution over luminosity to reconstruct the star-formation history (SFH), quantify the dust production and mass loss from modeling the multiwavelength spectral energy distributions, and relate this to luminosity and radius variations. In this second of a series of papers, we present the methodology used to estimate SFH based on long-period variable (LPV) stars and then derive it for Andromeda I (And I) dwarf galaxy as an example of the survey. Using our identified 59 LPV candidates within two half-light radii of And I and Padova stellar evolution models, we estimated the SFH of this galaxy. A major epoch of star formation occurred in And I peaking around 6.6 Gyr ago, reaching 0.0035 ± 0.0016 M ⊙ yr−1 and only slowly declining until 1–2 Gyr ago. The presence of some dusty LPVs in this galaxy corresponds to a slight increase in recent star formation peaking around 800 Myr ago. We evaluate a quenching time around 4 Gyr ago (z < 0.5), which makes And I a late-quenching dSph. A total stellar mass (16 ± 7) × 106 M ⊙ is calculated within two half-light radii of And I for a constant metallicity Z = 0.0007.


2021 ◽  
Vol 507 (4) ◽  
pp. 6045-6060
Author(s):  
Nelvy Choque-Challapa ◽  
J Alfonso L Aguerri ◽  
Pavel E Mancera Piña ◽  
Reynier Peletier ◽  
Aku Venhola ◽  
...  

ABSTRACT We analyse a sample of 12 galaxy clusters, from the Kapteyn IAC WEAVE INT Cluster Survey (KIWICS) looking for dwarf galaxy candidates. By using photometric data in the r and g bands from the Wide Field Camera (WFC) at the 2.5-m Isaac Newton Telescope (INT), we select a sample of bright dwarf galaxies (M$_r\, \le$ −15.5 mag) in each cluster and analyse their spatial distribution, stellar colour, and as well as their Sérsic index and effective radius. We quantify the dwarf fraction inside the R200 radius of each cluster, which ranges from ∼0.7 to ∼0.9. Additionally, when comparing the fraction in the inner region with the outermost region of the clusters, we find that the fraction of dwarfs tends to increase going to the outer regions. We also study the clustercentric distance distribution of dwarf and giant galaxies (M$_r\, \lt $ −19.0 mag), and in half of the clusters of our sample, the dwarfs are distributed in a statistically different way as the giants, with the giant galaxies being closer to the cluster centre. We analyse the stellar colour of the dwarf candidates and quantify the fraction of blue dwarfs inside the R200 radius, which is found to be less than ∼0.4, but increases with distance from the cluster centre. Regarding the structural parameters, the Sérsic index for the dwarfs we visually classify as early-type dwarfs tends to be higher in the inner region of the cluster. These results indicate the role that the cluster environment plays in shaping the observational properties of low-mass haloes.


Author(s):  
J B Rodríguez-González ◽  
L Sabin ◽  
J A Toalá ◽  
S Zavala ◽  
G Ramos-Larios ◽  
...  

Abstract We present the first detailed study of the bipolar planetary nebula (PN) IPHASX J191104.8+060845 (PN G 040.6−01.5) discovered as part of the Isaac Newton Telescope Photometric Hα Survey of the Northern Galactic plane (IPHAS). We present Nordic Optical Telescope (NOT) narrow-band images to unveil its true morphology. This PN consists of a main cavity with two newly uncovered extended low-surface brightness lobes located towards the NW and SE directions. Using near-IR WISE images we unveiled the presence of a barrel like structure, which surrounds the main cavity, which would explain the dark lane towards the equatorial regions. We also use Gran Telescopio de Canarias (GTC) spectra to study the physical properties of this PN. We emphasise the potential of old PNe detected in IPHAS to study the final stages of the evolution of the circumstellar medium around solar-like stars.


2020 ◽  
Vol 496 (1) ◽  
pp. 959-973
Author(s):  
V M A Gómez-González ◽  
J A Toalá ◽  
M A Guerrero ◽  
H Todt ◽  
L Sabin ◽  
...  

ABSTRACT We present the analysis of the planetary nebula (PN) NGC 2371 around the [Wolf–Rayet] (WR) star WD 0722+295. Our Isaac Newton Telescope intermediate dispersion spectrograph spectra, in conjunction with archival optical and ultraviolet images, unveil in unprecedented detail the high ionization of NGC 2371. The nebula has an apparent multipolar morphology, with two pairs of lobes protruding from a barrel-like central cavity, a pair of dense low ionization knots misaligned with the symmetry axis embedded within the central cavity, and a high-excitation halo mainly detected in He ii. The abundances from the barrel-like central cavity and dense knots agree with abundance determinations for other PNe with [WR]-type central stars of PNe. We suggest that the densest knots inside NGC 2371 are the oldest structures, remnant of a dense equatorial structure, while the main nebular shell and outer lobes resulted from a latter ejection that ended the stellar evolution. The analysis of position–velocity diagrams produced from our high-quality spectra suggests that NGC 2371 has a bipolar shape with each lobe presenting a double structure protruding from a barrel-like central region. The analysis of the spectra of WD 0722+295 results in similar stellar parameters as previously reported. We corroborate that the spectral subtype corresponds with a [WO1] type.


2020 ◽  
Vol 894 (2) ◽  
pp. 135
Author(s):  
Elham Saremi ◽  
Atefeh Javadi ◽  
Jacco Th. van Loon ◽  
Habib Khosroshahi ◽  
Alireza Molaeinezhad ◽  
...  

Author(s):  
Szymon Gladysz ◽  
Andrew Lambert ◽  
Thomas Kociok ◽  
Detlev Sprung ◽  
Erik Sucher ◽  
...  

2019 ◽  
Vol 627 ◽  
pp. A124 ◽  
Author(s):  
M. Popescu ◽  
O. Vaduvescu ◽  
J. de León ◽  
R. M. Gherase ◽  
J. Licandro ◽  
...  

Context. The population of near-Earth asteroids (NEAs) shows a large variety of objects in terms of physical and dynamical properties. They are subject to planetary encounters and to strong solar wind and radiation effects. Their study is also motivated by practical reasons regarding space exploration and long-term probability of impact with the Earth. Aims. We aim to spectrally characterize a significant sample of NEAs with sizes in the range of ~0.25–5.5 km (categorized as large), and search for connections between their spectral types and the orbital parameters. Methods. Optical spectra of NEAs were obtained using the Isaac Newton Telescope (INT) equipped with the IDS spectrograph. These observations are analyzed using taxonomic classification and by comparison with laboratory spectra of meteorites. Results. A total number of 76 NEAs were observed. We spectrally classified 44 of them as Q/S-complex, 16 as B/C-complex, eight as V-types, and another eight belong to the remaining taxonomic classes. Our sample contains 27 asteroids categorized as potentially hazardous and 31 possible targets for space missions including (459872) 2014 EK24, (436724) 2011 UW158, and (67367) 2000 LY27. The spectral data corresponding to (276049) 2002 CE26 and (385186) 1994 AW1 shows the 0.7 μm feature which indicates the presence of hydrated minerals on their surface. We report that Q-types have the lowest perihelia (a median value and absolute deviation of 0.797 ± 0.244 AU) and are systematically larger than the S-type asteroids observed in our sample. We explain these observational evidences by thermal fatigue fragmentation as the main process for the rejuvenation of NEA surfaces. Conclusions. In general terms, the taxonomic distribution of our sample is similar to the previous studies and matches the broad groups of the inner main belt asteroids. Nevertheless, we found a wide diversity of spectra compared to the standard taxonomic types.


2018 ◽  
Vol 609 ◽  
pp. A105 ◽  
Author(s):  
O. Vaduvescu ◽  
L. Hudin ◽  
T. Mocnik ◽  
F. Char ◽  
A. Sonka ◽  
...  

Context. One-opposition near-Earth asteroids (NEAs) are growing in number, and they must be recovered to prevent loss and mismatch risk, and to improve their orbits, as they are likely to be too faint for detection in shallow surveys at future apparitions. Aims. We aimed to recover more than half of the one-opposition NEAs recommended for observations by the Minor Planet Center (MPC) using the Isaac Newton Telescope (INT) in soft-override mode and some fractions of available D-nights. During about 130 h in total between 2013 and 2016, we targeted 368 NEAs, among which 56 potentially hazardous asteroids (PHAs), observing 437 INT Wide Field Camera (WFC) fields and recovering 280 NEAs (76% of all targets). Methods. Engaging a core team of about ten students and amateurs, we used the THELI, Astrometrica, and the Find_Orb software to identify all moving objects using the blink and track-and-stack method for the faintest targets and plotting the positional uncertainty ellipse from NEODyS. Results. Most targets and recovered objects had apparent magnitudes centered around V ~ 22.8 mag, with some becoming as faint as V ~ 24 mag. One hundred and three objects (representing 28% of all targets) were recovered by EURONEAR alone by Aug. 2017. Orbital arcs were prolonged typically from a few weeks to a few years; our oldest recoveries reach 16 years. The O−C residuals for our 1854 NEA astrometric positions show that most measurements cluster closely around the origin. In addition to the recovered NEAs, 22 000 positions of about 3500 known minor planets and another 10 000 observations of about 1500 unknown objects (mostly main-belt objects) were promptly reported to the MPC by our team. Four new NEAs were discovered serendipitously in the analyzed fields and were promptly secured with the INT and other telescopes, while two more NEAs were lost due to extremely fast motion and lack of rapid follow-up time. They increase the counting to nine NEAs discovered by the EURONEAR in 2014 and 2015. Conclusions. Targeted projects to recover one-opposition NEAs are efficient in override access, especially using at least two-meter class and preferably larger field telescopes located in good sites, which appear even more efficient than the existing surveys.


2016 ◽  
Vol 466 (3) ◽  
pp. 3636-3647 ◽  
Author(s):  
M Monguió ◽  
I Negueruela ◽  
A Marco ◽  
C González-Fernández ◽  
J Alonso-Santiago ◽  
...  

Abstract NGC 7067 is a young open cluster located in the direction between the first and the second Galactic quadrants and close to the Perseus spiral arm. This makes it useful for studies of the nature of the Milky Way spiral arms. Strömgren photometry taken with the Wide Field Camera at the Isaac Newton Telescope allowed us to compute individual physical parameters for the observed stars and hence to derive the cluster's physical parameters. Spectra from the 1.93-m telescope at the Observatoire de Haute-Provence helped to check and improve the results. We obtained photometry for 1233 stars, individual physical parameters for 515 and spectra for 9 of them. The 139 selected cluster members lead to a cluster distance of 4.4 ± 0.4 kpc, with an age below log10(t(yr)) = 7.3 and a present mass of 1260 ± 160 M⊙. The morphology of the data reveals that the centre of the cluster is at (α, δ) = (21: 24: 13.69, +48: 00: 39.2) J2000, with a radius of 6.1 arcmin. Strömgren and spectroscopic data allowed us to improve the previous parameters available for the cluster in the literature.


Sign in / Sign up

Export Citation Format

Share Document