Stereotypies as Animal Welfare Indicators

Author(s):  
D. M. Broom
Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1445
Author(s):  
Mauro Giammarino ◽  
Silvana Mattiello ◽  
Monica Battini ◽  
Piero Quatto ◽  
Luca Maria Battaglini ◽  
...  

This study focuses on the problem of assessing inter-observer reliability (IOR) in the case of dichotomous categorical animal-based welfare indicators and the presence of two observers. Based on observations obtained from Animal Welfare Indicators (AWIN) project surveys conducted on nine dairy goat farms, and using udder asymmetry as an indicator, we compared the performance of the most popular agreement indexes available in the literature: Scott’s π, Cohen’s k, kPABAK, Holsti’s H, Krippendorff’s α, Hubert’s Γ, Janson and Vegelius’ J, Bangdiwala’s B, Andrés and Marzo’s ∆, and Gwet’s γ(AC1). Confidence intervals were calculated using closed formulas of variance estimates for π, k, kPABAK, H, α, Γ, J, ∆, and γ(AC1), while the bootstrap and exact bootstrap methods were used for all the indexes. All the indexes and closed formulas of variance estimates were calculated using Microsoft Excel. The bootstrap method was performed with R software, while the exact bootstrap method was performed with SAS software. k, π, and α exhibited a paradoxical behavior, showing unacceptably low values even in the presence of very high concordance rates. B and γ(AC1) showed values very close to the concordance rate, independently of its value. Both bootstrap and exact bootstrap methods turned out to be simpler compared to the implementation of closed variance formulas and provided effective confidence intervals for all the considered indexes. The best approach for measuring IOR in these cases is the use of B or γ(AC1), with bootstrap or exact bootstrap methods for confidence interval calculation.


Author(s):  
Renee S. Willis ◽  
Patricia A. Fleming ◽  
Emma J. Dunston-Clarke ◽  
Anne L. Barnes ◽  
David W. Miller ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 918-925
Author(s):  
María Cevallos-Almeida ◽  
Ana Burgos-Mayorga ◽  
Carlos A. Gómez ◽  
José Luis Lema-Hurtado ◽  
Leydi Lema ◽  
...  

Background and Aim: Pre-slaughter management and slaughter operations are considered critical factors for animal welfare and meat quality. Previous studies have found poor animal welfare management at municipal slaughterhouses in Ecuador, and little is known about how this affects the microbiological quality of the meat. Therefore, the aim of the study was to analyze the association of the microbiological quality of beef carcasses and animal welfare indicators in a municipal slaughterhouse in Ecuador. Materials and Methods: Data for 6 months were collected from a municipal slaughterhouse in Ecuador. Five trained researchers were strategically located along the slaughter process. A total of 351 animals were observed with regard to welfare indicators, and their carcasses were sampled to evaluate microbiological quality. Antemortem (slipping, falling, and vocalization) and postmortem animal welfare indicators (bleed interval, pH, temperature, and bruises) were measured. To determine the total aerobic bacteria (TAB) and Escherichia coli counts and the presence of Salmonella spp., we collected samples by swabbing four different points of each carcass. The association between microbiological quality and animal welfare indicators was studied using univariate and multivariate logistic regressions. Results: The mean TAB count was 5.3 log CFU/cm2, and the mean total count of E. coli was 2.4 log CFU/cm2. Salmonella spp. were isolated in 3.1% of the carcasses. An electric goad was used in all animals, 19.1% slipped at least once, and 19.9% vocalized. The mean pH of the carcasses was 7.2, and 79.2% of carcasses had bruises. Multivariate analysis showed that Salmonella spp. and the TAB count were associated with pH and the number of bruises (p = 0.01 in both cases). Conclusion: Although there was non-significant association between the majority of animal welfare indicators and microbiological quality, the poor management affecting animal welfare and carcass hygiene are worrisome.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yaneth Gómez ◽  
Anna H. Stygar ◽  
Iris J. M. M. Boumans ◽  
Eddie A. M. Bokkers ◽  
Lene J. Pedersen ◽  
...  

Several precision livestock farming (PLF) technologies, conceived for optimizing farming processes, are developed to detect the physical and behavioral changes of animals continuously and in real-time. The aim of this review was to explore the capacity of existing PLF technologies to contribute to the assessment of pig welfare. In a web search for commercially available PLF for pigs, 83 technologies were identified. A literature search was conducted, following systematic review guidelines (PRISMA), to identify studies on the validation of sensor technologies for assessing animal-based welfare indicators. Two validation levels were defined: internal (evaluation during system building within the same population that were used for system building) and external (evaluation on a different population than during system building). From 2,463 articles found, 111 were selected, which validated some PLF that could be applied to the assessment of animal-based welfare indicators of pigs (7% classified as external, and 93% as internal validation). From our list of commercially available PLF technologies, only 5% had been externally validated. The more often validated technologies were vision-based solutions (n = 45), followed by load-cells (n = 28; feeders and drinkers, force plates and scales), accelerometers (n = 14) and microphones (n = 14), thermal cameras (n = 10), photoelectric sensors (n = 5), radio-frequency identification (RFID) for tracking (n = 2), infrared thermometers (n = 1), and pyrometer (n = 1). Externally validated technologies were photoelectric sensors (n = 2), thermal cameras (n = 2), microphone (n = 1), load-cells (n = 1), RFID (n = 1), and pyrometer (n = 1). Measured traits included activity and posture-related behavior, feeding and drinking, other behavior, physical condition, and health. In conclusion, existing PLF technologies are potential tools for on-farm animal welfare assessment in pig production. However, validation studies are lacking for an important percentage of market available tools, and in particular research and development need to focus on identifying the feature candidates of the measures (e.g., deviations from diurnal pattern, threshold levels) that are valid signals of either negative or positive animal welfare. An important gap identified are the lack of technologies to assess affective states (both positive and negative states).


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 297 ◽  
Author(s):  
Zoe Raw ◽  
Joao B. Rodrigues ◽  
Karen Rickards ◽  
Joe Ryding ◽  
Stuart L. Norris ◽  
...  

The assessment of animal welfare poses numerous challenges, yet an emerging approach is the consolidation of existing knowledge into new frameworks which can offer standardised approaches to welfare assessment across a variety of contexts. Multiple tools exist for measuring the welfare of equids, but such tools have typically been developed for specific contexts. There is no ‘one size fits all’ which means that resulting datasets are generally non-comparable, creating a barrier to knowledge-sharing and collaboration between the many organisations working to improve equid welfare around the globe. To address this, we developed the Equid Assessment, Research and Scoping (EARS) tool, which incorporates pre-existing validated welfare assessment methods alongside new welfare indicators to deliver a larger and more comprehensive series of welfare indicators than currently exists, creating a single resource that can be used to assess equid welfare in any context. We field-trialled three welfare assessment protocols within the EARS tool, and applied these to welfare assessment of equids in a variety of contexts across nineteen countries. The EARS tool proved a useful, versatile and rapid method for collecting welfare assessment data and we collected 7464 welfare assessments in a period of fifteen months. We evaluate the EARS tool and provide ideas for future development.


2010 ◽  
Vol 93 (7) ◽  
pp. 2998-3006 ◽  
Author(s):  
C. Kielland ◽  
E. Skjerve ◽  
O. Østerås ◽  
A.J. Zanella

Sign in / Sign up

Export Citation Format

Share Document