The Evolutionary Status of Short-Period Rs CVn and Related W UMa Eclipsing Binaries

Author(s):  
G. Russo ◽  
L. Milano ◽  
S. Mancuso
1983 ◽  
Vol 71 ◽  
pp. 463-464 ◽  
Author(s):  
G. Russo ◽  
L. Milano ◽  
S. Mancuso

Among the RS CVn stars showing solar-type activity, with spectral types ranging from F to K and total masses up to 4 M⊙, there are two peculiar groups with period less than one day:a)agroup with components well inside their Roche lobes (Short-Period-Group, hereinafter SPG) and b) a group with their components in a thin or marginal degree of contact, with lightcurves of W UMa-W type (hereinafter WWG).


2021 ◽  
Vol 502 (1) ◽  
pp. 1299-1311
Author(s):  
Heidi B Thiemann ◽  
Andrew J Norton ◽  
Hugh J Dickinson ◽  
Adam McMaster ◽  
Ulrich C Kolb

ABSTRACT We present the first analysis of results from the SuperWASP variable stars Zooniverse project, which is aiming to classify 1.6 million phase-folded light curves of candidate stellar variables observed by the SuperWASP all sky survey with periods detected in the SuperWASP periodicity catalogue. The resultant data set currently contains >1 million classifications corresponding to >500 000 object–period combinations, provided by citizen–scientist volunteers. Volunteer-classified light curves have ∼89 per cent accuracy for detached and semidetached eclipsing binaries, but only ∼9 per cent accuracy for rotationally modulated variables, based on known objects. We demonstrate that this Zooniverse project will be valuable for both population studies of individual variable types and the identification of stellar variables for follow-up. We present preliminary findings on various unique and extreme variables in this analysis, including long-period contact binaries and binaries near the short-period cut-off, and we identify 301 previously unknown binaries and pulsators. We are now in the process of developing a web portal to enable other researchers to access the outputs of the SuperWASP variable stars project.


Author(s):  
Sara Bulut ◽  
Baris Hoyman ◽  
Ahmet Dervisoglu ◽  
Orkun Özdarcan ◽  
Ömür Cakilrli

Abstract We present results of the combined photometric and spectroscopic analysis of four systems, which are eclipsing binaries with a twin–component (mass ratio q ≃ 1). These are exceptional tools to provide information for probing the internal structure of stars. None of the systems were previously recognized as twin binaries. We used a number of high–resolution optical spectra to calculate the radial velocities and later combined them with photometry to derive orbital parameters. Temperatures and metallicities of systems were estimated from high-resolution spectra. For each binary, we obtained a full set of orbital and physical parameters, reaching precision below 3 per cent in masses and radii for whole pairs. By comparing our results with PARSEC and MIST isochrones, we assess the distance, age and evolutionary status of the researched objects. The primary and/or secondary stars of EPIC 216075815 and EPIC 202843107 are one of the cases where asteroseismic parameters of δ Sct and γ Dor pulsators were confirmed by an independent method and rare examples of the twin–eclipsing binaries, therefore the following analyses and results concern the pulsating nature of the components.


New Astronomy ◽  
2022 ◽  
pp. 101756
Author(s):  
Fu-Xing Li ◽  
Nian-Ping Liu ◽  
Boonrucksar Soonthornthum ◽  
Thawicharat Sarotsakulchai

2020 ◽  
Vol 20 (8) ◽  
pp. 113
Author(s):  
D. Shanti Priya ◽  
P. Ravi Raja ◽  
J. Rukmini ◽  
M. Raghu Prasad ◽  
Vineet S. Thomas

2019 ◽  
Vol 490 (4) ◽  
pp. 5147-5173
Author(s):  
F Pozo Nuñez ◽  
R Chini ◽  
A Barr Domínguez ◽  
Ch Fein ◽  
M Hackstein ◽  
...  

ABSTRACT We report results from a search for Galactic high-mass eclipsing binaries. The photometric monitoring campaign was performed in Sloan r and i with the robotic twin refractor RoBoTT at the Universitätssternwarte Bochum in Chile and complemented by Johnson UBV data. Comparison with the SIMBAD data base reveals 260 variable high-mass stars. Based on well-sampled light curves, we discovered 35 new eclipsing high-mass systems and confirm the properties of six previously known systems. For all objects, we provide the first light curves and determine orbital periods through the Lafler–Kinman algorithm. Apart from GSC 08173-0018 and Pismis 24-13 ($P = 19.47\, d$ and $20.14\, d$) and the exceptional short-period system TYC 6561-1765-1 ($P = 0.71\, d$), all systems have orbital periods between 1 and 9 d. We model the light curves of 26 systems within the framework of the Roche geometry and calculate fundamental parameters for each system component. The Roche lobe analysis indicates that 14 systems have a detached geometry, while 12 systems have a semidetached geometry; seven of them are near-contact systems. The deduced mass ratios q = M2/M1 reach from 0.4 to 1.0 with an average value of 0.8. The similarity of masses suggests that these high-mass binaries were created during the star formation process rather than by tidal capture.


2019 ◽  
Vol 19 (7) ◽  
pp. 097 ◽  
Author(s):  
Qiang Yue ◽  
Li-Yun Zhang ◽  
Xian-Ming L. Han ◽  
Hong-Peng Lu ◽  
Liu Long ◽  
...  

2020 ◽  
Vol 493 (2) ◽  
pp. 2659-2675
Author(s):  
Derya Sürgit ◽  
Ahmet Erdem ◽  
Chris A Engelbrecht ◽  
Fred Marang

ABSTRACT We present combined photometric and spectroscopic analyses of the three southern eclipsing binary stars: DQ Car, BK Ind, and V4396 Sgr. Radial velocity curves of these three systems were obtained at the South African Astronomical Observatory, and their light curves from the available data bases and surveys were used for the analysis. 75 new times of minima for these three eclipsing binaries were derived, and their ephemerides were updated. Only the O–C diagram of DQ Car indicates a cyclical variation, which was interpreted in terms of the light-time effect due to a third body in the system. Our final models describe these three systems as Algol-like binary stars with detached configurations. The masses and radii were found to be M1 = 1.86(±0.17) M⊙, R1 = 1.63(±0.06) R⊙ and M2 = 1.74(±0.17) M⊙, R2 = 1.52(±0.07) R⊙ for the primary and secondary components of DQ Car; M1 = 1.16(±0.05) M⊙, R1 = 1.33(±0.03) R⊙ and M2 = 0.98(±0.04) M⊙, R2 = 1.00(±0.03) R⊙ for BK Ind; and M1 = 3.14(±0.22) M⊙, R1 = 3.00(±0.09) R⊙ and M2 = 3.13(±0.24) M⊙, R2 = 2.40(±0.08) R⊙ for V4396 Sgr, respectively. The distances to DQ Car, BK Ind, and V4396 Sgr were derived to be 701(±50), 285(±20), and 414(±30) pc from the distance modulus formula, taking into account interstellar extinction. The evolutionary status of these three systems was also studied. It has been found that the components of DQ Car are very young stars at the age of ∼25 Myr and those of BK Ind and V4396 Sgr are evolved main-sequence stars at the ages of ∼2.69 Gyr and ∼204 Myr, respectively.


Sign in / Sign up

Export Citation Format

Share Document