Physical Processes Affecting the Motion of Small Bodies in the Solar System and their Application to the Evolution of Meteor Streams

Author(s):  
Iwan P. Williams
1983 ◽  
Vol 74 ◽  
pp. 83-87
Author(s):  
Iwan P. Williams

AbstractIn addition to planetary perturbations, the small particles which make up a meteor stream are subject to outward radiation pressure and the Poynting-Robertson effect. New particles can also be generated in a stream through being released from the nucleus of a comet. We summarise the main physical effects, discuss models for meteor stream evolution and give a brief account of the observational data available.


1972 ◽  
Vol 45 ◽  
pp. 413-418 ◽  
Author(s):  
S. K. Vsekhsvyatskij

It has become evident that comets and other small bodies are indications of eruptive evolution processes occurring in many of the planetary bodies of the solar system. The total number of near-parabolic comets moving in the solar system is 1011 to 1012, but as many as 10 to 15 percent of them are leaving the solar system with hyperbolic velocities. Taking into account also the number of short-period comets that degenerate into asteroids and meteor streams, we have estimated the total number of comets formed during the lifetime of the solar system as 1015 to 1016 (and total mass 1029 to 1031 g). The investigation of comets and other small bodies enables us to evaluate the scale of the processes of cosmic vulcanism and the tremendous internal energy of the planets, that energy being derived from the initial stellar nature of planetary material.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 32
Author(s):  
Walaa Elmasry ◽  
Yoko Kebukawa ◽  
Kensei Kobayashi

The extraterrestrial delivery of organics to primitive Earth has been supported by many laboratory and space experiments. Minerals played an important role in the evolution of meteoritic organic matter. In this study, we simulated aqueous alteration in small bodies by using a solution mixture of H2CO and NH3 in the presence of water at 150 °C under different heating durations, which produced amino acids after acid hydrolysis. Moreover, minerals were added to the previous mixture to examine their catalyzing/inhibiting impact on amino acid formation. Without minerals, glycine was the dominant amino acid obtained at 1 d of the heating experiment, while alanine and β-alanine increased significantly and became dominant after 3 to 7 d. Minerals enhanced the yield of amino acids at short heating duration (1 d); however, they induced their decomposition at longer heating duration (7 d). Additionally, montmorillonite enhanced amino acid production at 1 d, while olivine and serpentine enhanced production at 3 d. Molecular weight distribution in the whole of the products obtained by gel chromatography showed that minerals enhanced both decomposition and combination of molecules. Our results indicate that minerals affected the formation of amino acids in aqueous environments in small Solar System bodies and that the amino acids could have different response behaviors according to different minerals.


2018 ◽  
pp. 395-419 ◽  
Author(s):  
Julia de León ◽  
Javier Licandro ◽  
Noemí Pinilla-Alonso

Sign in / Sign up

Export Citation Format

Share Document