Calculation of Wave Fields in Mantle Velocity Models

Author(s):  
M. R. Illingworth ◽  
B. L. N. Kennett
2019 ◽  
Vol 220 (1) ◽  
pp. 428-449 ◽  
Author(s):  
Junlin Hua ◽  
Karen M Fischer ◽  
Nicholas J Mancinelli ◽  
Tiezhao Bao

SUMMARY Sp receiver functions have been widely used to detect the lithosphere–asthenosphere boundary (LAB) and other mantle discontinuities. However, traditional common conversion point (CCP) stacking can be biased by the assumption of horizontal layers and this method typically underestimates scattering amplitudes from velocity boundaries with significant dips. A new pre-stack migration method based on recently developed Sp scattering kernels offers an alternative that more accurately captures the timing and amplitude of scattering. When calculating kernels, Sp-S times are estimated with the fast-marching method, and scattering amplitude versus direction, geometrical spreading and phase shifts are accounted for. To minimize imaging artefacts with larger station spacing, Sp receiver functions are interpolated to more closely spaced pseudo-stations using either compressive sampling or spatial averaging algorithms. To test the kernel-based stacking method, synthetic Sp phases were predicted using SPECFEM2D for velocity models with a flat Moho and a negative mantle velocity gradient with a ramp structure. The kernel-based stacking method resolves horizontal interfaces equally well as CCP stacking and outperforms CCP stacking when imaging boundaries with dips of more than 8°, although dip resolution is still limited. Use of more vertically incident phases such as SKSp improves retrieval of dipping discontinuity segments. A second approach is to down-weight the portions of the kernels that have the greatest positive interference among neighbouring stations, thus enhancing scattering from dipping structures where positive interference is lower. With this downweighting, the kernel-based stacking method applied to Sp data is able to continuously resolve LAB discontinuities with dips up to 15° and to partially resolve continuous LAB discontinuities with dips of ∼20°. The intrinsic properties of teleseismic Sp phase kernels limit their ability to resolve LAB structures with dips of ∼20–35°, but still larger dips of ∼40–50° are resolvable with dense and appropriately placed stations. Analysis of Sp scattering kernels also explains the effectiveness of CCP stacking for quasi-horizontal interfaces.


2019 ◽  
Vol 31 (01) ◽  
pp. 2050017
Author(s):  
Liang Wang ◽  
Xuhui Meng ◽  
Hao-Chi Wu ◽  
Tian-Hu Wang ◽  
Gui Lu

The discrete effect on the boundary condition has been a fundamental topic for the lattice Boltzmann method (LBM) in simulating heat and mass transfer problems. In previous works based on the anti-bounce-back (ABB) boundary condition for convection-diffusion equations (CDEs), it is indicated that the discrete effect cannot be commonly removed in the Bhatnagar–Gross–Krook (BGK) model except for a special value of relaxation time. Targeting this point in this paper, we still proceed within the framework of BGK model for two-dimensional CDEs, and analyze the discrete effect on a non-halfway single-node boundary condition which incorporates the effect of the distance ratio. By analyzing an unidirectional diffusion problem with a parabolic distribution, the theoretical derivations with three different discrete velocity models show that the numerical slip is a combined function of the relaxation time and the distance ratio. Different from previous works, we definitely find that the relaxation time can be freely adjusted by the distance ratio in a proper range to eliminate the numerical slip. Some numerical simulations are carried out to validate the theoretical derivations, and the numerical results for the cases of straight and curved boundaries confirm our theoretical analysis. Finally, it should be noted that the present analysis can be extended from the BGK model to other lattice Boltzmann (LB) collision models for CDEs, which can broaden the parameter range of the relaxation time to approach 0.5.


Sign in / Sign up

Export Citation Format

Share Document