Parabolic Harnack inequality for divergence form second order differential operators

Author(s):  
L. Saloff-Coste
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Alberto Cialdea ◽  
Vita Leonessa ◽  
Angelica Malaspina

We investigate the Dirichlet problem related to linear elliptic second-order partial differential operators with smooth coefficients in divergence form in bounded connected domains ofRm(m≥3) with Lyapunov boundary. In particular, we show how to represent the solution in terms of a simple layer potential. We use an indirect boundary integral method hinging on the theory of reducible operators and the theory of differential forms.


2019 ◽  
Vol 22 (02) ◽  
pp. 1950010
Author(s):  
Yanping Chen ◽  
Qingquan Deng ◽  
Yong Ding

Let [Formula: see text] be a second-order divergence form elliptic operator and [Formula: see text] an accretive, [Formula: see text] matrix with bounded measurable complex coefficients in [Formula: see text] In this paper, we establish [Formula: see text] theory for the commutators generated by the fractional differential operators related to [Formula: see text] and bounded mean oscillation (BMO)–Sobolev functions.


2006 ◽  
Vol 08 (01) ◽  
pp. 67-99 ◽  
Author(s):  
BRUNO FRANCHI ◽  
NICOLETTA TCHOU ◽  
MARIA CARLA TESI

In this paper, we prove a div–curl type theorem in the Heisenberg group ℍ1, and then we develop a theory of H-convergence for second order differential operators in divergence form in ℍ1. The div–curl theorem requires an intrinsic notion of the curl operator in ℍ1 (that we denote by curlℍ), that turns out to be a second order differential operator in the left invariant horizontal vector fields. As an evidence of the coherence of this definition, we prove an intrinsic Stokes formula for curlℍ. Eventually, we show that this notion is related to one of the exterior differentials in Rumin's complex on contact manifolds.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
E. I. Buchbinder ◽  
D. Hutchings ◽  
S. M. Kuzenko ◽  
M. Ponds

Abstract Within the framework of $$ \mathcal{N} $$ N = 1 anti-de Sitter (AdS) supersymmetry in four dimensions, we derive superspin projection operators (or superprojectors). For a tensor superfield $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)}:= {\mathfrak{V}}_{\left(\alpha 1\dots \alpha m\right)\left({\overset{\cdot }{\alpha}}_1\dots {\overset{\cdot }{\alpha}}_n\right)} $$ V α m α ⋅ n ≔ V α 1 … αm α ⋅ 1 … α ⋅ n on AdS superspace, with m and n non-negative integers, the corresponding superprojector turns $$ {\mathfrak{V}}_{\alpha (m)\overset{\cdot }{\alpha }(n)} $$ V α m α ⋅ n into a multiplet with the properties of a conserved conformal supercurrent. It is demonstrated that the poles of such superprojectors correspond to (partially) massless multiplets, and the associated gauge transformations are derived. We give a systematic discussion of how to realise the unitary and the partially massless representations of the $$ \mathcal{N} $$ N = 1 AdS4 superalgebra $$ \mathfrak{osp} $$ osp (1|4) in terms of on-shell superfields. As an example, we present an off-shell model for the massive gravitino multiplet in AdS4. We also prove that the gauge-invariant actions for superconformal higher-spin multiplets factorise into products of minimal second-order differential operators.


Sign in / Sign up

Export Citation Format

Share Document