A New Mechanism for Angular Momentum Loss in Very-Low-Mass X-ray Binaries and Binary Millisecond Pulsars

Author(s):  
M. Banit ◽  
J. Shaham
2006 ◽  
Vol 2 (S238) ◽  
pp. 339-340
Author(s):  
Wen-Cong Chen ◽  
Xiang-Dong Li

AbstractWe propose a plausible mechanism for orbital angular momentum loss in black-hole intermediate-mass X-ray binaries, assuming that a small fraction of the transferred mass form a circumbinary disc. The disc can effectively drain orbital angular momentum from the binary, leading to the formation of compact black-hole low-mass X-ray binaries. This scenario also suggests the possible existence of luminous, persistent black hole low-mass X-ray binaries.


1997 ◽  
Vol 163 ◽  
pp. 828-829 ◽  
Author(s):  
R. F. Webbink ◽  
V. Kalogera

AbstractConsiderations of donor star stability, age, and mass transfer rate show that low-mass X-ray binaries and binary millisecond pulsars with orbital periods longer than a few days must have survived an initial phase of super-Eddington mass transfer. We review the physical arguments leading to this conclusion, and examine its implications for the apparent discrepancy between the death rate for low-mass X-ray binaries and the birth rate of binary millisecond pulsars.


1984 ◽  
Vol 80 ◽  
pp. 199-227
Author(s):  
C. De Loore

AbstractComparison of the characteristics of groups of stars in various evolutionary phases and the study of individual systems allow to make estimates of the parameters governing mass loss and mass transfer. Observations enable us in a few cases to determine geometric models for binaries during or after the mass transfer phase (disks, rings, common envelopes, symbiotics, interacting binaries, compact components).From spectra taken at different phases, radial velocity curves can be derived and masses and radii can be determined. In special cases spectra in different spectral ranges (visual, UV, X-ray) are required for the determination of the radial velocities of the two components (for X-ray binaries, for systems with hot and cool components). Information on parameters related to the mass transfer process enables us to consider non conservative evolution - i.e. the computation of evolutionary sequences with the assumption that mass and angular momentum not only are transferred from one of the components towards the other one, but that also mass and angular momentum can leave the system. Careful and detailed analysis of the observations allows in certain cases to determine the parameters governing this mass and angular momentum loss, and for contact phases, to determine the degree of contact.


1996 ◽  
Vol 160 ◽  
pp. 547-556 ◽  
Author(s):  
Dipankar Bhattacharya

AbstractAccording to the standard model, millisecond pulsars are the descendants of low-mass X-ray binaries (LMXB). The importance of this formation route has, however, been questioned by several authors on different grounds. This paper critically reviews the arguments and assumptions underlying the standard model. The kinematic properties of the LMXB and millisecond pulsar populations are compared, and are found to be compatible. This provides an additional argument in favour of the standard model.


1989 ◽  
Vol 107 ◽  
pp. 141-153
Author(s):  
L.R. Yungelson ◽  
A.V. Tutukov ◽  
A.V. Fedorova

AbstractWe discuss the origin, evolution and fate of low-mass Algols (LMA) that have components with initial masses less than 2.5 M0. The semi-major axes of orbits of pre-LMA do not exceed 20-25 R0. The rate of formation of Algol-type stars is ~ 0.01/year. Magnetic stellar winds may be the factor that determines the evolution of LMA. Most LMA end their lives as double helium degenerate dwarfs with M1/M2 ~ 0.88 (like L870-2). Some of them even merge through angular momentum loss caused by gravitational waves.


2006 ◽  
Vol 2 (S240) ◽  
pp. 678-681
Author(s):  
V.V. Pustynski ◽  
I. Pustylnik

AbstractIt has been shown quite recently (Morales-Rueda et al. 2003) that dB stars, extreme horizontal branch (EHB) objects in high probability all belong to binary systems. We study in detail the mass and angular momentum loss from the giant progenitors of sdB stars in an attempt to clarify why binarity must be a crucial factor in producing EHB objects. Assuming that the progenitors of EHB objects belong to binaries with initial separations of a roughly a hundred solar radii and fill in their critical Roche lobes while close to the tip of red giant branch, we have found that considerable shrinkage of the orbit can be achieved due to a combined effect of angular momentum loss from the red giant and appreciable accretion on its low mass companion on the hydrodynamical timescale of the donor, resulting in formation of helium WD with masses roughly equal to a half solar mass and thus evading the common envelope stage. A simple approximative analytical formula for mass loss rate from Roche lobe filling giant donor has been proposed depending on mass, luminosity and radius of donor.


Sign in / Sign up

Export Citation Format

Share Document