Thermal Dynamics of Calorimeter Systems

Author(s):  
J. A. Mason ◽  
N. Bainbridge ◽  
P. J. H. Heffer
Keyword(s):  
2001 ◽  
Vol 20 (2) ◽  
pp. 159-169 ◽  
Author(s):  
M. Ganesh Madhan ◽  
P. R. Vaya ◽  
N. Gunasekaran

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 550
Author(s):  
Xiaofan Du ◽  
Jing Wang ◽  
Lan Chen ◽  
Zhenxi Zhang ◽  
Cuiping Yao

Delivering extracellular materials into adherent cells presents several challenges. A homemade photoporation platform, mediated by gold nanoparticles (AuNPs), was constructed to find a suitable method for finding all adherent cells in this process with high delivery efficiency. The thermal dynamics of AuNPs could be monitored. Based on this system, 60 nm AuNPs were selected to be attached to cells for optimal photoporation. After irradiating the cells covered with AuNPs using a nanosecond pulse laser, fluorescein isothiocyanate-dextran in the medium were delivered into optoporated adherent HeLa (human cervical cell lines) cells. The delivery efficiency and cell viability of this process were evaluated using a fluorescence microscope and flow cytometry. The experimental results showed that targeting cells using antibodies, laser irradiation from the top of the cell culture well, and reducing the cell medium are important for improving the delivery efficiency. The optimal loading efficiency for adherent HeLa cells was 53.4%.


Nanoscale ◽  
2017 ◽  
Vol 9 (44) ◽  
pp. 17284-17292 ◽  
Author(s):  
Anton Plech ◽  
Shyjumon Ibrahimkutty ◽  
Stefan Reich ◽  
Gemma Newby

Photothermal reactions of metallic nanostructures, such as gold nanorods show appealing structural relaxations, such as bubble formation or particle modification.


2016 ◽  
Author(s):  
Jeremy R. Dunklin ◽  
Gregory T. Forcherio ◽  
Keith R. Berry ◽  
D. Keith Roper

2012 ◽  
Vol 252 ◽  
pp. 433-437
Author(s):  
Zhi Yang Yuan

The ground-source heat pump is a system which takes the shallow surface soil energy as the source of heating and cooling. The temperature of ground source is relatively stable throughout the year, which makes the ground-source heat pump have the higher operation efficiency compared with the traditional air-conditioning system.Study on the ground-source heat pump with properties of thermal dynamics used in heating and air comditioning by ecomomic analysis is still an important issue. In this paper, the ground-source heat pump and the traditional heating and air-conditioning system have been compared in terms of their economic competitiveness. Firstly, it is required to compare the ground-source heat pump with the traditional heating method in terms of the heating economy. Afterwards, it is necessary to compare the ground-source heat pump with the conventional electric refrigeration in terms of the air-conditioning economy. Finally, it is needed to conduct the comprehensive and economic analysis for the ground-source heat pump and the boilers and air conditioning, which includes four programs.


Author(s):  
Satadru Dey ◽  
Beshah Ayalew

This paper proposes and demonstrates an estimation scheme for Li-ion concentrations in both electrodes of a Li-ion battery cell. The well-known observability deficiencies in the two-electrode electrochemical models of Li-ion battery cells are first overcome by extending them with a thermal evolution model. Essentially, coupling of electrochemical–thermal dynamics emerging from the fact that the lithium concentrations contribute to the entropic heat generation is utilized to overcome the observability issue. Then, an estimation scheme comprised of a cascade of a sliding-mode observer and an unscented Kalman filter (UKF) is constructed that exploits the resulting structure of the coupled model. The approach gives new real-time estimation capabilities for two often-sought pieces of information about a battery cell: (1) estimation of cell-capacity and (2) tracking the capacity loss due to degradation mechanisms such as lithium plating. These capabilities are possible since the two-electrode model needs not be reduced further to a single-electrode model by adding Li conservation assumptions, which do not hold with long-term operation. Simulation studies are included for the validation of the proposed scheme. Effect of measurement noise and parametric uncertainties is also included in the simulation results to evaluate the performance of the proposed scheme.


2021 ◽  
Author(s):  
Maike Offer ◽  
Riccardo Scandroglio ◽  
Daniel Draebing ◽  
Michael Krautblatter

<p>Warming of permafrost in steep rock walls decreases their mechanical stability and could triggers rockfalls and rockslides. However, the direct link between climate change and permafrost degradation is seldom quantified with precise monitoring techniques and long-term time series. Where boreholes are not possible, laboratory-calibrated Electrical Resistivity Tomography (ERT) is presumably the most accurate quantitative permafrost monitoring technique providing a sensitive record for frozen vs. unfrozen bedrock. Recently, 4D inversions allow also quantification of frozen bedrock extension and of its changes with time (Scandroglio et al., in review).</p><p>In this study we (i) evaluate the influence of the inversion parameters on the volumes and (ii) connect the volumetric changes with measured mechanical consequences.</p><p>The ERT time-serie was recorded between 2006 and 2019 in steep bedrock at the permafrost affected Steintälli Ridge (3100 m asl). Accurately positioned 205 drilled-in steel electrodes in 5 parallel lines across the rock ridge have been repeatedly measured with similar hardware and are compared to laboratory temperature-resistivity (T–ρ) calibration of water-saturated samples from the field. Inversions were conducted using the open-source software BERT for the first time with the aim of estimating permafrost volumetric changes over a decade.</p><p>(i) Here we present a sensitivity analysis of the outcomes by testing various plausible inversion set-ups. Results are computed with different input data filters, data error model, regularization parameter (λ), model roughness reweighting and time-lapse constraints. The model with the largest permafrost degradation was obtained without any time-lapse constraints, whereas constraining each model with the prior measurement results in the smallest degradation. Important changes are also connected to the data error estimation, while other setting seems to have less influence on the frozen volume. All inversions confirmed a drastic permafrost degradation in the last 13 years with an average reduction of 3.900±600 m<sup>3</sup> (60±10% of the starting volume), well in agreement with the measured air temperatures increase.</p><p>(ii) Average bedrock thawing rate of ~300 m<sup>3</sup>/a is expected to significantly influence the stability of the ridge. Resistivity changes are especially evident on the south-west exposed side and in the core of the ridge and are here connected to deformations measured with tape extensometer, in order to precisely estimate the mechanical consequences of bedrock warming.</p><p>In summary, the strong degradation of permafrost in the last decade it’s here confirmed since inversion settings only have minor influence on volume quantification. Internal thermal dynamics need correlation with measured external deformation for a correct interpretation of stability consequences. These results are a fundamental benchmark for evaluating mountain permafrost degradation in relation to climate change and demonstrate the key role of temperature-calibrated 4D ERT.</p><p> </p><p>Reference:</p><p>Scandroglio, R. et al. (in review) ‘4D-Quantification of alpine permafrost degradation in steep rock walls using a laboratory-calibrated ERT approach’, <em>Near Surface Geophysics</em>.</p>


Sign in / Sign up

Export Citation Format

Share Document