Requirements of the CD Loop in the D2 Protein of Photosystem II as Probed by Combinatorial Mutagenesis in the Cyanobacterium Synechocystis sp. PCC 6803

Author(s):  
Svetlana Ermakova-Gerdes ◽  
Dmitrii Vavilin ◽  
Anna Keilty ◽  
Wim Vermaas
2020 ◽  
Author(s):  
Deng Liu ◽  
Virginia M. Johnson ◽  
Himadri B. Pakrasi

ABSTRACTThe cyanobacterium Synechocystis sp. PCC 6803 is used as a model organism to study photosynthesis, as it can utilize glucose as the sole carbon source to support its growth under heterotrophic conditions. CRISPR interference (CRISPRi) has been widely applied to repress the transcription of genes in a targeted manner in cyanobacteria. However, a robust and reversible induced CRISPRi system has not been explored in Synechocystis 6803 to knock down and recover the expression of a targeted gene. In this study, we built a tightly controlled chimeric promoter, PrhaBAD-RSW, in which a theophylline responsive riboswitch was integrated into a rhamnose-inducible promoter system. We applied this promoter to drive the expression of ddCpf1 (DNase-dead Cpf1 nuclease) in a CRISPRi system and chose the PSII reaction center gene psbD (D2 protein) to target for repression. psbD was specifically knocked down by over 95% of its native expression, leading to severely inhibited Photosystem II activity and growth of Synechocystis 6803 under photoautotrophic conditions. Significantly, removal of the inducers rhamnose and theophylline reversed repression by CRISPRi. Expression of PsbD recovered following release of repression, coupled with increased Photosystem II content and activity. This reversibly induced CRISPRi system in Synechocystis 6803 represents a new strategy for study of the biogenesis of photosynthetic complexes in cyanobacteria.


2000 ◽  
Vol 182 (9) ◽  
pp. 2453-2460 ◽  
Author(s):  
Anna T. Keilty ◽  
Svetlana Y. Ermakova-Gerdes ◽  
Wim F. J. Vermaas

ABSTRACT The CD lumenal loop region of the photosystem II reaction center protein D2 contains residues involved in oxygen evolution. Since detailed structural information about this region is unavailable, an M13-based combinatorial mutagenesis approach was used to investigate structure-function relationships in this vital region of D2 inSynechocystis sp. strain PCC 6803. The CD loop coding region contains close to 100 nucleotides, and for effective mutagenesis, it was subdivided into four regions of seven to eight codons. A gain-of-function selection protocol was employed such that all mutants that were selected contained a functional D2 protein. In this way, conservation patterns of residues along with numbers and types of amino acid substitutions accommodated at each position for each set of mutants would indicate which residues in the CD loop may play important structural and functional roles. Results of this study have substantiated the importance of residues previously studied by site-directed mutagenesis such as Arg180 and His189 and have identified other previously unremarkable residues in the CD loop (such as Ser166, Phe169, and Ala170) that cannot be replaced by many other residues. In addition, the pliability of the CD loop was further tested using deletion and D1-D2 substitution constructs in M13. This showed that the length of the loop was important to its function, and in two cases, D2 could accommodate homologous sequences from D1, which forms a heterodimer with D2 in photosystem II, but not the other way around. This study of the CD loop in D2 provides valuable clues regarding the structural and functional requirements of the region.


Sign in / Sign up

Export Citation Format

Share Document