From Media to Molecules: New Approaches to the Detection of Micro-Organisms in Water

2000 ◽  
pp. 35-41
Author(s):  
C. R. Fricker
1975 ◽  
Vol 28 (11) ◽  
pp. 928-928
Author(s):  
W. J. Ryan

2019 ◽  
Vol 42 ◽  
Author(s):  
Karen Bartsch ◽  
David Estes

Abstract In challenging the assumption of autistic social uninterest, Jaswal & Akhtar have opened the door to scrutinizing similar unexamined assumptions embedded in other literatures, such as those on children's typically developing behaviors regarding others’ minds and morals. Extending skeptical analysis to other areas may reveal new approaches for evaluating competing claims regarding social interest in autistic individuals.


Author(s):  
L. Reimer

Most information about a specimen is obtained by elastic scattering of electrons, but one cannot avoid inelastic scattering and therefore radiation damage by ionisation as a primary process of damage. This damage is a dose effect, being proportional to the product of lectron current density j and the irradiation time t in Coul.cm−2 as long as there is a negligible heating of the specimen.Therefore one has to determine the dose needed to produce secondary damage processes, which can be measured quantitatively by a chemical or physical effect in the thin specimen. The survival of micro-organisms or the decrease of photoconductivity and cathodoluminescence are such effects needing very small doses (see table).


2014 ◽  
Vol 56 ◽  
pp. 207-219 ◽  
Author(s):  
Chi L.L. Pham ◽  
Ann H. Kwan ◽  
Margaret Sunde

Amyloids are insoluble fibrillar protein deposits with an underlying cross-β structure initially discovered in the context of human diseases. However, it is now clear that the same fibrillar structure is used by many organisms, from bacteria to humans, in order to achieve a diverse range of biological functions. These functions include structure and protection (e.g. curli and chorion proteins, and insect and spider silk proteins), aiding interface transitions and cell–cell recognition (e.g. chaplins, rodlins and hydrophobins), protein control and storage (e.g. Microcin E492, modulins and PMEL), and epigenetic inheritance and memory [e.g. Sup35, Ure2p, HET-s and CPEB (cytoplasmic polyadenylation element-binding protein)]. As more examples of functional amyloid come to light, the list of roles associated with functional amyloids has continued to expand. More recently, amyloids have also been implicated in signal transduction [e.g. RIP1/RIP3 (receptor-interacting protein)] and perhaps in host defence [e.g. aDrs (anionic dermaseptin) peptide]. The present chapter discusses in detail functional amyloids that are used in Nature by micro-organisms, non-mammalian animals and mammals, including the biological roles that they play, their molecular composition and how they assemble, as well as the coping strategies that organisms have evolved to avoid the potential toxicity of functional amyloid.


2002 ◽  
Vol 38 (11) ◽  
pp. S7
Author(s):  
B Weber

Sign in / Sign up

Export Citation Format

Share Document