Phenotypic Variation Between Transgenic Plants: What is Making Gene Expression Unpredictable?

Author(s):  
A. Caplan ◽  
P. H. Berger ◽  
M. Naderi
2021 ◽  
Vol 22 (14) ◽  
pp. 7328
Author(s):  
Yang Chen ◽  
Mi Zhang ◽  
Lei Wang ◽  
Xiaohan Yu ◽  
Xianbi Li ◽  
...  

Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for their function in resistance to Verticillium wilt, we investigated KWL homologs in cotton. Thirty-five KWL genes (GhKWLs) were identified from the genome of upland cotton (Gossypium hirsutum). Among them, GhKWL1 was shown to be localized in nucleus and cytosol, and its gene expression is induced by the infection of V. dahliae. We revealed that GhKWL1 was a positive regulator of GhERF105. Silencing of GhKWL1 resulted in a decrease, whereas overexpression led to an increase in resistance of transgenic plants to Verticillium wilt. Interestingly, through binding to GhKWL1, the pathogenic effector protein VdISC1 produced by V. dahliae could impair the defense response mediated by GhKWL1. Therefore, our study suggests there is a GhKWL1-mediated defense response in cotton, which can be hijacked by V. dahliae through the interaction of VdISC1 with GhKWL1.


1999 ◽  
Vol 12 (5) ◽  
pp. 377-384 ◽  
Author(s):  
Chiara Geri ◽  
Edi Cecchini ◽  
Maria E. Giannakou ◽  
Simon N. Covey ◽  
Joel J. Milner

Cauliflower mosaic virus (CaMV) gene VI protein (P6) is an important determinant of symptom expression. Differential display polymerase chain reaction (PCR) was used to identify changes in gene expression in Arabidopsis elicited by a P6 transgene that causes a symptomatic phenotype. We used slot blot hybridization to measure the abundance of mRNAs complementary to 66 candidate PCR products in transgenic, CaMV-infected, and uninfected Arabidopsis plants. CaMV-infected and P6 transgenic plants showed broadly similar changes in abundance of mRNA species. In P6 transgenic plants we detected 18 PCR products that showed unambiguous changes in abundance plus another 15 that showed more limited changes (approximately twofold). CaMV-infected plants showed 17 unambiguous and 13 limited changes. Down-regulated species include those encoding a novel, phenol-like sulfotransferase, and a glycine-rich, RNA-binding protein. Up-regulated species included ones encoding an myb protein, glycine-rich and stress-inducible proteins, and a member of a previously unreported gene family. CaMV infection causes alterations in expression of many Arabidopsis genes. Transgene-mediated expression of P6 mimics virus infection in its effect on host gene expression, providing a potential mechanism for this process.


2004 ◽  
pp. 291-312 ◽  
Author(s):  
Andrew F. Page ◽  
Subhash C. Minocha

1988 ◽  
pp. 275-303 ◽  
Author(s):  
Ferenc Nagy ◽  
Steve A. Kay ◽  
Nam-Hai Chua

1996 ◽  
Vol 5 (2) ◽  
pp. 105-113 ◽  
Author(s):  
Vadim L. Mett ◽  
Ellen Podivinsky ◽  
Andrew M. Tennant ◽  
Leesa P. Lochhead ◽  
William T. Jones ◽  
...  

2019 ◽  
Vol 20 (13) ◽  
pp. 3334 ◽  
Author(s):  
Jeong-Won Nam ◽  
Jinouk Yeon ◽  
Jiseong Jeong ◽  
Eunyoung Cho ◽  
Ho Bang Kim ◽  
...  

We examined the substrate preference of Cuphea paucipetala acyl-ACP thioesterases, CpFatB4 and CpFatB5, and gene expression changes associated with the modification of lipid composition in the seed, using Brassica napus transgenic plants overexpressing CpFatB4 or CpFatB5 under the control of a seed-specific promoter. CpFatB4 seeds contained a higher level of total saturated fatty acid (FA) content, with 4.3 times increase in 16:0 palmitic acid, whereas CpFatB5 seeds showed approximately 3% accumulation of 10:0 and 12:0 medium-chain FAs, and a small increase in other saturated FAs, resulting in higher levels of total saturated FAs. RNA-Seq analysis using entire developing pods at 8, 25, and 45 days after flowering (DAF) showed up-regulation of genes for β-ketoacyl-acyl carrier protein synthase I/II, stearoyl-ACP desaturase, oleate desaturase, and linoleate desaturase, which could increase unsaturated FAs and possibly compensate for the increase in 16:0 palmitic acid at 45 DAF in CpFatB4 transgenic plants. In CpFatB5 transgenic plants, many putative chloroplast- or mitochondria-encoded genes were identified as differentially expressed. Our results report comprehensive gene expression changes induced by alterations of seed FA composition and reveal potential targets for further genetic modifications.


2013 ◽  
Vol 47 (3) ◽  
pp. 145-155 ◽  
Author(s):  
N. Shcherbak ◽  
O. Kishchenko ◽  
L. Sakhno ◽  
I. Komarnytsky ◽  
M. Kuchuk

Sign in / Sign up

Export Citation Format

Share Document