efficient recovery
Recently Published Documents





2021 ◽  
Vol 11 (24) ◽  
pp. 12167
Yanyan Huang ◽  
Vinu R.V. ◽  
Ziyang Chen ◽  
Tushar Sarkar ◽  
Rakesh Kumar Singh ◽  

Orbital angular momentum (OAM) of optical vortex beams has been regarded as an independent physical dimension of light with predominant information-carrying potential. However, the presence of scattering environment and turbulent atmosphere scrambles the helical wavefront and destroys the orthogonality of modes in vortex beam propagation. Here, we propose and experimentally demonstrate a new basis for the recovery of the OAM mode using a holographic ghost diffraction scheme. The technique utilizes the speckle field generated from a rotating diffuser for optical vortex mode encoding, and the fourth-order correlation of the speckle field for the efficient recovery of the associated modes. Furthermore, we successfully demonstrate the complex-field recovery of OAM modes by the adoption of a holography scheme in combination with the ghost diffraction system. We evaluate the feasibility of the approach by simulation and followed by experimental demonstration for the recovery of various sequentially encoded OAM modes. Finally, the efficacy of the recovered modes was quantitatively analyzed by an OAM mode analysis utilizing orthogonal projection scheme.

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1534
Junyuan Liu ◽  
Yuxin Qu ◽  
Han Wang

Methods for the isolation and analysis of extracellular vesicles (EVs) have been extensively explored in the field of life science and in clinical diagnosis in recent years. The separation and efficient recovery of high-purity target EVs from biological samples are important prerequisites in the study of EVs. So far, commonly used methods of EV separation include ultracentrifugation, filtration, solvent precipitation and immunoaffinity capturing. However, these methods suffer from long processing time, EV damage and low enrichment efficiency. The use of acoustophoretic force facilitates the non-contact label-free manipulation of cells based on their size and compressibility but lacks specificity. Additionally, the acoustophoretic force exerted on sub-micron substances is normally weak and insufficient for separation. Here we present a novel immuno-acoustic sorting technology, where biological substances such as EVs, viruses, and biomolecules, can be specifically captured by antibody/receptor coated microparticles through immunoaffinity, and manipulated by an acoustophoretic force exerted on the microparticles. Using immuno-acoustic sorting technology, we successfully separated and purified HER2-positive EVs for further downstream analysis. This method holds great potential in isolating and purifying specific targets such as disease-related EVs from biological fluids and opens new possibilities for the EV-based early diagnosis and prognosis of diseases.

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3343
Ayesha Arif ◽  
Ming Xu ◽  
Jamshaid Rashid ◽  
Chaudry Sajed Saraj ◽  
Wei Li ◽  

Owing to technological advancements and the ever-increasing population, the search for renewable energy resources has increased. One such attempt at finding effective renewable energy is recycling of lithium-ion batteries and using the recycled material as an electrocatalyst for the oxygen evolution reaction (OER) step in water splitting reactions. In electrocatalysis, the OER plays a crucial role and several electrocatalysts have been investigated to improve the efficiency of O2 gas evolution. Present research involves the use of citric acid coupled with lemon peel extracts for efficient recovery of lithium cobaltate from waste lithium-ion batteries and subsequent use of the recovered cathode material for OER in water splitting. Optimum recovery was achieved at 90 °C within 3 h of treatment with 1.5 M citric acid and 1.5% extract volume. The consequent electrode materials were calcined at 600, 700 and 800 °C and compared to the untreated waste material calcined at 600 °C for OER activity. The treated material recovered and calcined at 600 °C was the best among all of the samples for OER activity. Its average particle size was estimated to be within the 20–100 nm range and required a low overpotential of 0.55 V vs. RHE for the current density to reach 10 mA cm2 with a Tafel value of 128 mV/dec.

Sign in / Sign up

Export Citation Format

Share Document