effector protein
Recently Published Documents


TOTAL DOCUMENTS

607
(FIVE YEARS 152)

H-INDEX

70
(FIVE YEARS 9)

2022 ◽  
Vol 221 (3) ◽  
Author(s):  
Michelle E. Maxson ◽  
Yazan M. Abbas ◽  
Jing Ze Wu ◽  
Jonathan D. Plumb ◽  
Sergio Grinstein ◽  
...  

Acidification of secretory and endocytic organelles is required for proper receptor recycling, membrane traffic, protein degradation, and solute transport. Proton-pumping vacuolar H+ ATPases (V-ATPases) are responsible for this luminal acidification, which increases progressively as secretory and endocytic vesicles mature. An increasing density of V-ATPase complexes is thought to account for the gradual decrease in pH, but available reagents have not been sufficiently sensitive or specific to test this hypothesis. We introduce a new probe to localize and quantify V-ATPases. The probe is derived from SidK, a Legionella pneumophila effector protein that binds to the V-ATPase A subunit. We generated plasmids encoding fluorescent chimeras of SidK1-278, and labeled recombinant SidK1-278 with Alexa Fluor 568 to visualize and quantify V-ATPases with high specificity in live and fixed cells, respectively. We show that V-ATPases are acquired progressively during phagosome maturation, that they distribute in discrete membrane subdomains, and that their density in lysosomes depends on their subcellular localization.


2022 ◽  
Author(s):  
Fei Huang ◽  
Yu Hui ◽  
Ang Li ◽  
Rishalaiti Tayier ◽  
Dilinaer Yaermaimaiti ◽  
...  

Abstract Endemic arsenism is a major disease concern in China, with arsenic poisoning and induced potential lesions key issues on a global level. The liver is the main target organ where arsenic is metabolized; chronic exposure to arsenic-induced liver fibrosis is also closely related to autophagy, however, the exact mechanisms are remain unclear. In this study, we explored the effects of NaAsO2 on apoptosis and autophagy in human hepatic stellate cells(HSC). We established a fibrosis model in the HSC line, LX-2 which was exposed to NaAsO2 for 24h, 48h, and 72h. Cells were then transfected using an autophagy double-labeled RFP-GFP-LC3 adenoviral plasmid. Laser confocal microscopy indicated significant infection efficiencies and autophagy in LX-2. Flow cytometry was also used to investigate the effects of different NaAsO2 doses on apoptosis. NaAsO2 treatment upregulated the expression of autophagic markers, including microtubule-associated protein light chain A/B(LC3), ubiquitin binding protein(SQSTM-1/P62), autophagy related genes(ATGs), recombinant human autophagy effector protein (Beclin-1), and B cell lymphoma-2(BCL-2), but downregulated mammalian target of rapamycin(mTOR). Also, α-smooth muscle actin(α-SMA) expression was significantly upregulated in all NaAsO2 groups. Furthermore, mTOR silencing via 3-methyladenine(3-MA) altered NaAsO2 induced autophagy, LC3, Beclin-1, and SQSTM-1/P62 expression were all upregulated in both NaAsO2 and 3-MA-iAs groups. Altogether, NaAsO2 induced HSC autophagy via apoptotic pathways. 3-MA inhibited LX-2 activity and reduced NaAsO2-induced autophagy which may inhibit fibrosis progression caused by this toxin.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yannick von Grabowiecki ◽  
Vinaya Phatak ◽  
Lydia Aschauer ◽  
Patricia A. J. Muller

Rab11-FIP1 is a Rab effector protein that is involved in endosomal recycling and trafficking of various molecules throughout the endocytic compartments of the cell. The consequence of this can be increased secretion or increased membrane expression of those molecules. In general, expression of Rab11-FIP1 coincides with more tumourigenic and metastatic cell behaviour. Rab11-FIP1 can work in concert with oncogenes such as mutant p53, but has also been speculated to be an oncogene in its own right. In this perspective, we will discuss and speculate upon our observations that mutant p53 promotes Rab11-FIP1 function to not only promote invasive behaviour, but also chemoresistance by regulating a multitude of different proteins.


2021 ◽  
Vol 9 (12) ◽  
pp. 2519
Author(s):  
Hongxia Fan ◽  
Wenwen Yang ◽  
Jiayue Nie ◽  
Chen Lin ◽  
Jian Wu ◽  
...  

Sclerotinia sclerotiorum causes devastating diseases in many agriculturally important crops, including oilseed rape and sunflower. However, the mechanisms of Sclerotinia sclerotiorum pathogenesis remain poorly understood. In this study, we characterized a YML079-like cupin protein (SsYCP1) from Sclerotinia sclerotiorum. We showed that SsYCP1 is strongly expressed and secreted during Sclerotinia sclerotiorum infection. Sclerotinia sclerotiorum infection was promoted by SsYCP1 overexpression and inhibited by silencing this gene with synthetic double-stranded RNA. These results collectively indicate SsYCP1 as a putative effector protein that contributes to Sclerotinia sclerotiorum pathogenicity. These findings extend our understanding of effector-mediated Sclerotinia sclerotiorum pathogenesis and suggest a novel role for YML079-like cupin proteins in plant–pathogen interactions.


2021 ◽  
pp. 1-5
Author(s):  
Danique Beijer ◽  
Kiran Polavarapu ◽  
Veeramani Preethish-Kumar ◽  
Mainak Bardhan ◽  
Maike F. Dohrn ◽  
...  

Mutations in PLEKHG5, a pleckstrin homology domain containing member of the GEF family, are associated with distal spinal muscular atrophy and intermediate Charcot-Marie-Tooth disease. Here, we describe an isolated case with distal intermediate neuropathy with scapular winging. By whole exome sequencing, we identified the homozygous PLEKHG5 Arg97Gln missense mutation, located in the N-terminal region of the protein. This mutation resides between a zinc-finger motif and a RBD domain, involved in binding rnd3, a RhoA effector protein. We conclude that based on the characteristic phenotype presented by the patient and the supportive genetic findings, the PLEKHG5 mutation is the causative variant.


2021 ◽  
Author(s):  
Marek M. Drozdz ◽  
Ashley S. Doane ◽  
Rached Alkallas ◽  
Garrett Desman ◽  
Rohan Bareja ◽  
...  

cAMP signaling pathways are critical for both oncogenesis and tumor suppression. cAMP signaling is localized to multiple spatially distinct microdomains, but the role of cAMP microdomains in cancer cell biology is poorly understood. We developed a tunable genetic system that allows us to activate cAMP signaling in specific microdomains. We uncovered a previously unappreciated nuclear cAMP microdomain that functionally activates a tumor suppressive pathway in a broad range of cancers by inhibiting YAP, a key effector protein of the Hippo pathway, inside the nucleus. We show that nuclear cAMP induces a LATS-dependent pathway leading to phosphorylation of nuclear YAP solely at serine 397, export of YAP from the nucleus, without YAP protein degradation. Thus, nuclear cAMP inhibition of nuclear YAP is distinct from other known mechanisms of Hippo regulation. Pharmacologic targeting of specific cAMP microdomains remains an untapped therapeutic approach for cancer, and since Hippo pathway deregulation can lead to oncogenesis and chemotherapeutic resistance, drugs directed at the nuclear cAMP microdomain may provide new avenues for the treatment of cancer.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009650
Author(s):  
Stephan Pienkoß ◽  
Soheila Javadi ◽  
Paweena Chaoprasid ◽  
Thomas Nolte ◽  
Christian Twittenhoff ◽  
...  

Many bacterial pathogens use a type III secretion system (T3SS) as molecular syringe to inject effector proteins into the host cell. In the foodborne pathogen Yersinia pseudotuberculosis, delivery of the secreted effector protein cocktail through the T3SS depends on YopN, a molecular gatekeeper that controls access to the secretion channel from the bacterial cytoplasm. Here, we show that several checkpoints adjust yopN expression to virulence conditions. A dominant cue is the host body temperature. A temperature of 37°C is known to induce the RNA thermometer (RNAT)-dependent synthesis of LcrF, a transcription factor that activates expression of the entire T3SS regulon. Here, we uncovered a second layer of temperature control. We show that another RNAT silences translation of the yopN mRNA at low environmental temperatures. The long and short 5’-untranslated region of both cellular yopN isoforms fold into a similar secondary structure that blocks ribosome binding. The hairpin structure with an internal loop melts at 37°C and thereby permits formation of the translation initiation complex as shown by mutational analysis, in vitro structure probing and toeprinting methods. Importantly, we demonstrate the physiological relevance of the RNAT in the faithful control of type III secretion by using a point-mutated thermostable RNAT variant with a trapped SD sequence. Abrogated YopN production in this strain led to unrestricted effector protein secretion into the medium, bacterial growth arrest and delayed translocation into eukaryotic host cells. Cumulatively, our results show that substrate delivery by the Yersinia T3SS is under hierarchical surveillance of two RNATs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fen Yang ◽  
Jianji Chen ◽  
Bin Liu ◽  
Guozhen Gao ◽  
Manu Sebastian ◽  
...  

AbstractSPINDOC is tightly associated with the histone H3K4me3 effector protein SPIN1. To gain a better understanding of the biological roles of SPINDOC, we identified its interacting proteins. Unexpectedly, SPINDOC forms two mutually exclusive protein complexes, one with SPIN1 and the other with PARP1. Consistent with its ability to directly interact with PARP1, SPINDOC expression is induced by DNA damage, likely by KLF4, and recruited to DNA lesions with dynamics that follows PARP1. In SPINDOC knockout cells, the levels of PARylation are reduced, in both the absence and presence of DNA damage. The SPINDOC/PARP1 interaction promotes the clearance of PARP1 from damaged DNA, and also impacts the expression of known transcriptional targets of PARP1. To address the in vivo roles of SPINDOC in PARP1 regulation, we generate SPINDOC knockout mice, which are viable, but slightly smaller than their wildtype counterparts. The KO mice display reduced levels of PARylation and, like PARP1 KO mice, are hypersensitive to IR-induced DNA damage. The findings identify a SPIN1-independent role for SPINDOC in the regulation of PARP1-mediated PARylation and the DNA damage response.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Dilara Kocakaplan ◽  
Hüseyin Karaburk ◽  
Cansu Dilege ◽  
Idil Kirdök ◽  
Şeyma Nur Bektaş ◽  
...  

Mitotic exit in budding yeast is dependent on correct orientation of the mitotic spindle along the cell polarity axis. When accurate positioning of the spindle fails, a surveillance mechanism named the Spindle Position Checkpoint (SPOC) prevents cells from exiting mitosis. Mutants with a defective SPOC become multinucleated and lose their genomic integrity. Yet, a comprehensive understanding of the SPOC mechanism is missing. In this study, we identified the type 1 protein phosphatase, Glc7, in association with its regulatory protein Bud14 as a novel checkpoint component. We further showed that Glc7-Bud14 promotes dephosphorylation of the SPOC effector protein Bfa1. Our results suggest a model in which two mechanisms act in parallel for a robust checkpoint response: first, the SPOC kinase Kin4 isolates Bfa1 away from the inhibitory kinase Cdc5 and second, Glc7-Bud14 dephosphorylates Bfa1 to fully activate the checkpoint effector.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weidong Wang ◽  
Jiajun Nie ◽  
Luqiong Lv ◽  
Wan Gong ◽  
Shuaile Wang ◽  
...  

To successfully colonize the plants, the pathogenic microbes secrete a mass of effector proteins which manipulate host immunity. Apple valsa canker is a destructive disease caused by the weakly parasitic fungus Valsa mali. A previous study indicated that the V. mali effector protein 1 (VmEP1) is an essential virulence factor. However, the pathogenic mechanism of VmEP1 in V. mali remains poorly understood. In this study, we found that the apple (Malus domestica) pathogenesis-related 10 proteins (MdPR10) are the virulence target of VmEP1 using a yeast two-hybrid screening. By bimolecular fluorescence (BiFC) and coimmunoprecipitation (Co-IP), we confirmed that the VmEP1 interacts with MdPR10 in vivo. Silencing of MdPR10 notably enhanced the V. mali infection, and overexpression of MdPR10 markedly reduced its infection, which corroborates its positive role in plant immunity against V. mali. Furthermore, we showed that the co-expression of VmEP1 with MdPR10 compromised the MdPR10-mediated resistance to V. mali. Taken together, our results revealed a mechanism by which a V. mali effector protein suppresses the host immune responses by interfering with the MdPR10-mediated resistance to V. mali during the infection.


Sign in / Sign up

Export Citation Format

Share Document