scholarly journals GhKWL1 Upregulates GhERF105 but Its Function Is Impaired by Binding with VdISC1, a Pathogenic Effector of Verticillium dahliae

2021 ◽  
Vol 22 (14) ◽  
pp. 7328
Author(s):  
Yang Chen ◽  
Mi Zhang ◽  
Lei Wang ◽  
Xiaohan Yu ◽  
Xianbi Li ◽  
...  

Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for their function in resistance to Verticillium wilt, we investigated KWL homologs in cotton. Thirty-five KWL genes (GhKWLs) were identified from the genome of upland cotton (Gossypium hirsutum). Among them, GhKWL1 was shown to be localized in nucleus and cytosol, and its gene expression is induced by the infection of V. dahliae. We revealed that GhKWL1 was a positive regulator of GhERF105. Silencing of GhKWL1 resulted in a decrease, whereas overexpression led to an increase in resistance of transgenic plants to Verticillium wilt. Interestingly, through binding to GhKWL1, the pathogenic effector protein VdISC1 produced by V. dahliae could impair the defense response mediated by GhKWL1. Therefore, our study suggests there is a GhKWL1-mediated defense response in cotton, which can be hijacked by V. dahliae through the interaction of VdISC1 with GhKWL1.

BMC Biology ◽  
2010 ◽  
Vol 8 (1) ◽  
pp. 139 ◽  
Author(s):  
Ryan A Rapp ◽  
Candace H Haigler ◽  
Lex Flagel ◽  
Ran H Hovav ◽  
Joshua A Udall ◽  
...  

2014 ◽  
Vol 884-885 ◽  
pp. 441-445
Author(s):  
Xiao Hong He ◽  
Min Shi ◽  
Quan Sun ◽  
Ying Fan Cai

Plant microRNAs (miRNAs) play important roles in the post-transcriptional regulation of plant growth, development, flowering, metabolism, and responses to stress. Verticillium wilt is a vascular disease in plants caused by the fungal pathogen Verticillium dahliae. In order to find and investigate miRNAs related to the upland cotton variety Zhongzhimian KV-1 resistant Verticillium wilt, deep sequencing technology was used to construct small RNA libraries of two samples, which from seedlings of KV-1 cotton by different pathogenicity strains Verticillium wilt pathogen infections. The V. dahliae strains D07038 and V991 were used in this study and are moderately virulent and virulent, respectively. miRNAs with differential expression among the samples were obtained through analysis of sequencing data and three miRNAs (miR1423a-5p, miR3444a-5p and miR5562) were chosen to be identified by quantitative real-time RT-PCR (qRT-PCR). At the same time, their target genes were predicted. The results of qRT-PCR were consistent, which indicated 3444a-5p and miR5562 were with the highest expression level in virulent condition, but miR1423a-5p was a low-level expression. The results of experiments agreed with deep sequencing data basically. Analysis of the transcript data for target genes of three conserved miRNAs indicated that they play an important role in plant-pathogen interaction mechanism. The identification and characterisation of miRNAs from upland cotton may help to further the study of miRNA regulatory mechanisms that are involved in resistance to Verticillium wilt.


Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1089-1092 ◽  
Author(s):  
J. E. DeVay ◽  
B. L. Weir ◽  
R. J. Wakeman ◽  
J. J. Stapleton

Two isolates of Verticillium dahliae, a black microsclerotial isolate and an isolate from potassium deficient cotton plants that forms white colonies on agar media, were examined for their effects on the potassium content of cotton plants. The potassium content of petioles from fully expanded leaves collected at random from branches 6 to 7 nodes below the terminal node were monitored during July and August in 1993 to 1995. Potassium contents of petioles from plants inoculated with V. dahliae did not differ significantly from plants injected with sterile water until the plants were nearing peak boll load. Both isolates caused a gradual development of potassium deficiency symptoms in leaves of inoculated plants and a decrease in petiole potassium, often accompanied by chlorosis and necrosis typical of Verticillium wilt. These results suggest that infection of cotton plants by V. dahliae causes an impairment in the uptake and translocation of potassium that is often associated with the development of potassium deficiency symptoms in leaves of plants with large boll loads.


2020 ◽  
Vol 213 ◽  
pp. 103599
Author(s):  
Jun Yang ◽  
Xingfen Wang ◽  
Meixia Xie ◽  
Guoning Wang ◽  
Zhikun Li ◽  
...  

2020 ◽  
Author(s):  
Fan Zhang ◽  
Jiayi Zhang ◽  
Wanqing Chen ◽  
Xinran Liu ◽  
Cheng Li ◽  
...  

Abstract Background: Verticillium wilt (VW), caused by Verticillium dahliae Kleb., is a major plant disease that causes heavy annual losses around the world, especially in Upland cotton (Gossypium hirsutum). The disease-causing pathogen can be classified into defoliating (D) and non-defoliating (ND) pathotypes based on the induced symptoms. At present, little is known about the complex mechanisms of fungal pathogenicity and cotton resistance to it. Comparative analysis of temporal transcriptome was performed on two V. dahliae strains, Vd_086 (D) and Vd_BP2 (ND), at key development stages (hyphal growth, microsclerotia production, and spore germination) to reveal the functional process on plant defoliation and death.Results: Differentially expressed gene (DEG) analysis revealed a strong correlation between cell wall protein kinase activities and the early pathogenicity of defoliating Vd_086. With weighted gene co-expression network analysis (WGCNA), six specific gene modules were correlated with the biological traits of the fungal samples. Functional enrichment with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways together with DEG analysis revealed six pectin degrading enzymes including Polygalacturonase gene 1 (PG1), Pectate lyase gene (PEL) and Pectinesterase gene 1 (PME1) expressed in the early development of Vd_086 that may be related to the robust pathogenicity of this strain during the early invasion. The expression of four of these genes was verified by real-time quantitative reverse transcription PCR (qRT-PCR). In addition, we identified Mitogen-Activated Protein Kinase (MAPK) signaling “hub” genes that may regulate these pectinases.Conclusions: Enhanced expression of pectin degradation enzymes is associated with the stronger pathogenicity of Vd_086 than Vd_BP2, especially at early infection stages. The disease-causing capability is likely regulated by MAPK signaling genes. This study provides new insight into molecular mechanisms of the plant-pathogen interaction on the VW disease, facilitating more effective control measures against this pathogen, including molecular breeding for the VW-resistant cotton cultivars.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiangtao Yang ◽  
Lihua Gao ◽  
Xiaojing Liu ◽  
Xiaochun Zhang ◽  
Xujing Wang ◽  
...  

AbstractCotton is an important natural fiber crop and economic crop worldwide. The quality of cotton fiber directly determines the quality of cotton textiles. Identifying cotton fiber development-related genes and exploring their biological functions will not only help to better understand the elongation and development mechanisms of cotton fibers but also provide a theoretical basis for the cultivation of new cotton varieties with excellent fiber quality. In this study, RNA sequencing technology was used to construct transcriptome databases for different nonfiber tissues (root, leaf, anther and stigma) and fiber developmental stages (7 days post-anthesis (DPA), 14 DPA, and 26 DPA) of upland cotton Coker 312. The sizes of the seven transcriptome databases constructed ranged from 4.43 to 5.20 Gb, corresponding to approximately twice the genome size of Gossypium hirsutum (2.5 Gb). Among the obtained clean reads, 83.32% to 88.22% could be compared to the upland cotton TM-1 reference genome. By analyzing the differential gene expression profiles of the transcriptome libraries of fiber and nonfiber tissues, we obtained 1205, 1135 and 937 genes with significantly upregulated expression at 7 DPA, 14 DPA and 26 DPA, respectively, and 124, 179 and 213 genes with significantly downregulated expression. Subsequently, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analyses were performed, which revealed that these genes were mainly involved in catalytic activity, carbohydrate metabolism, the cell membrane and organelles, signal transduction and other functions and metabolic pathways. Through gene annotation analysis, many transcription factors and genes related to fiber development were screened. Thirty-six genes were randomly selected from the significantly upregulated genes in fiber, and expression profile analysis was performed using qRT-PCR. The results were highly consistent with the gene expression profile analyzed by RNA-seq, and all of the genes were specifically or predominantly expressed in fiber. Therefore, our RNA sequencing-based comparative transcriptome analysis will lay a foundation for future research to provide new genetic resources for the genetic engineering of improved cotton fiber quality and for cultivating new transgenic cotton germplasms for fiber quality improvement.


2019 ◽  
Author(s):  
YUN ZHANG ◽  
Na Yang ◽  
Lihong Zhao ◽  
Heqin Zhu ◽  
Canming Tang(New Corresponding Author)

Abstract Background: Verticillium wilt of cotton is a serious soil-borne disease that causes a substantial reduction in cotton yields. A previous study showed that the endophytic fungus Chaetomium globosum CEF-082 could control Verticillium wilt of cotton, and induce a defense response in cotton plants. However, the comprehensive molecular mechanism governing this response is not yet clear. Results: To study the signalling mechanism induced by CEF-082, the transcriptome of cotton seedlings pretreated with CEF-082 was sequenced. The results revealed 5638 DEGs at 24 h post inoculation with CEF-082, and 2921 and 2153 DEGs at 12 and 48 h post inoculation with Verticillium dahliae, respectively. At 24 h post inoculation with CEF-082, KEGG enrichment analysis indicated that the DEGs were enriched mainly in the plant-pathogen interaction, MAPK signalling pathway-plant, flavonoid biosynthesis, and phenylpropanoid biosynthesis pathways. There were 1209 DEGs specifically induced only in cotton plants inoculated with V. dahliae in the presence of the biocontrol fungus CEF-082, and not when cotton plants were only inoculated with V. dahliae. GO analysis revealed that these DEGs were enriched mainly in the following terms: ROS metabolic process, H2O2 metabolic process, defense response, superoxide dismutase activity, and antioxidant activity. Moreover, many genes, such as ERF, CNGC, FLS2, MYB, GST and CML, that regulate crucial points in defense-related pathways were identified and may contribute to V. dahliae resistance in cotton. These results provide a basis for understanding the molecular mechanism by which the biocontrol fungus CEF-082 increases the resistance of cotton to Verticillium wilt. Conclusions: The results of this study showed that CEF-082 could regulate multiple metabolic pathways in cotton. After treatment with V. dahliae, the defense response of cotton plants preinoculated with CEF-082 was strengthened.


Sign in / Sign up

Export Citation Format

Share Document