Predicting the Effects of Climate Change on Fire Frequency in the Southeastern Canadian Boreal Forest

1995 ◽  
pp. 437-444 ◽  
Author(s):  
Y. Bergeron ◽  
M. D. Flannigan
2004 ◽  
Vol 80 (4) ◽  
pp. 458-462 ◽  
Author(s):  
Yves Bergeron

Over the past decade, there has been an increasing interest in the development of forest management approaches that are based on an understanding of historical natural disturbance dynamics. The rationale for such an approach is that management to favour landscape compositions and stand structures similar to those of natural ecosystems should also maintain biological diversity and essential ecological functions. In fire-dominated landscapes, this approach is possible only if current and future fire frequencies are sufficiently low, in comparison to pre-industrial fire frequency, that we can substitute fire with forest management. I address this question by comparing current and future fire frequency to historical reconstruction of fire frequency from studies in the Canadian boreal forest. Current and simulated future fire frequencies using 2× and 3×CO2 scenarios are lower than the historical fire frequency for most sites, suggesting that forest management could potentially be used to recreate the forest age structure of fire-controlled pre-industrial landscapes. Current even-aged management, however, tends to reduce forest variability: for example, fully regulated, even-aged management will tend to truncate the natural forest stand age distribution and eliminate overmature and old-growth forests from the landscape. The development of silvicultural techniques that maintain a spectrum of forest compositions and structures at different scales in the landscape is one avenue to maintain this variability. Key words: boreal forest, even aged management, fire regime, old-growth forests, climate change, partial cutting


2001 ◽  
Vol 10 (4) ◽  
pp. 405 ◽  
Author(s):  
B.D. Amiro ◽  
B.J. Stocks ◽  
M.E. Alexander ◽  
M.D. Flannigan ◽  
B.M. Wotton

This paper was presented at the conference ‘Integrating spatial technologies and ecological principles for a new age in fire management’, Boise, Idaho, USA, June 1999 Fire is the dominant stand-renewing disturbance through much of the Canadian boreal forest, with large high-intensity crown fires being common. From 1 to 3 million ha have burned on average during the past 80 years, with 6 years in the past two decades experiencing more than 4 million ha burned. A large-fire database that maps forest fires greater than 200 ha in area in Canada is being developed to catalogue historical fires. However, analyses using a regional climate model suggest that a changing climate caused by increasing greenhouse gases may alter fire weather, contributing to an increased area burned in the future. Direct carbon emissions from fire (combustion) are estimated to average 27 Tg carbon year–1 for 1959–1999 in Canada. Post-fire decomposition may be of a similar magnitude, and the regenerating forest has a different carbon sink strength. Measurements indicate that there is a net carbon release (source) by the forest immediately after the fire before vegetation is re-established. Daytime downward carbon fluxes over a burned forest take 1–3 decades to recover to those of a mature forest, but the annual carbon balance has not yet been measured. There is a potential positive feedback to global climate change, with anthropogenic greenhouse gases stimulating fire activity through weather changes, with fire releasing more carbon while the regenerating forest is a smaller carbon sink. However, changes in fuel type need to be considered in this scenario since fire spreads more slowly through younger deciduous forests. Proactive fuel management is evaluated as a potential mechanism to reduce area burned. However, it is difficult to envisage that such treatments could be employed successfully at the national scale, at least over the next few decades, because of the large scale of treatments required and ecological issues related to forest fragmentation and biodiversity.


AMBIO ◽  
2004 ◽  
Vol 33 (6) ◽  
pp. 356-360 ◽  
Author(s):  
Yves Bergeron ◽  
Mike Flannigan ◽  
Sylvie Gauthier ◽  
Alain Leduc ◽  
Patrick Lefort

2010 ◽  
Vol 19 (8) ◽  
pp. 1127 ◽  
Author(s):  
Yves Bergeron ◽  
Dominic Cyr ◽  
Martin P. Girardin ◽  
Christopher Carcaillet

Natural ecosystems have developed within ranges of conditions that can serve as references for setting conservation targets or assessing the current ecological integrity of managed ecosystems. Because of their climate determinism, forest fires are likely to have consequences that could exacerbate biophysical and socioeconomical vulnerabilities in the context of climate change. We evaluated future trends in fire activity under climate change in the eastern Canadian boreal forest and investigated whether these changes were included in the variability observed during the last 7000 years from sedimentary charcoal records from three lakes. Prediction of future annual area burned was made using simulated Monthly Drought Code data collected from an ensemble of 19 global climate model experiments. The increase in burn rate that is predicted for the end of the 21st century (0.45% year–1 with 95% confidence interval (0.32, 0.59) falls well within the long‐term past variability (0.37 to 0.90% year–1). Although our results suggest that the predicted change in burn rates per se will not move this ecosystem to new conditions, the effects of increasing fire incidence cumulated with current rates of clear‐cutting or other low‐retention types of harvesting, which still prevail in this region, remain preoccupying.


2010 ◽  
Vol 21 (7-8) ◽  
pp. 789-800 ◽  
Author(s):  
Douglas G. Woolford ◽  
Jiguo Cao ◽  
Charmaine B. Dean ◽  
David L. Martell

Sign in / Sign up

Export Citation Format

Share Document