Progressive cross waves due to the horizontal oscillations of a vertical cylinder in water. Evolution equations

1998 ◽  
pp. 227-247
Author(s):  
M. Markiewicz ◽  
O. Mahrenholtz
1988 ◽  
Vol 186 ◽  
pp. 119-127 ◽  
Author(s):  
John Miles

Luke's (1967) variational formulation for surface waves is extended to incorporate the motion of a wavemaker and applied to the cross-wave problem. Whitham's average-Lagrangian method then is invoked to obtain the evolution equations for the slowly varying complex amplitude of the parametrically excited cross-wave that is associated with symmetric excitation of standing waves in a rectangular tank of width π/k, length l and depth d for which kl = O(1) and kd [Gt ] 1. These evolution equations are Hamiltonian and isomorphic to those for parametric excitation of surface waves in a cylinder that is subjected to a vertical oscillation, for which phase-plane trajectories, stability criteria and the effects of damping are known (Miles 1984a). The formulation and results differ from those of Garrett (1970) in consequence of his linearization of the boundary condition at the wavemaker and his neglect of self-interaction of the cross-waves in the free-surface conditions (although Garrett does incorporate self-interaction in his calculation of the equilibrium amplitude of the cross-waves). These differences have only a small effect on the criterion for the stability of plane waves, but the self-interaction is crucial for the determination of the stability of the cross-waves.


1984 ◽  
Vol 138 ◽  
pp. 53-74 ◽  
Author(s):  
A. F. Jones

The evolution equations are obtained which govern the growth of cross-waves generated in a long deep channel by a wavemaker with small amplitude when the waves are modified by finite-amplitude effects. The linearized equations are compared with previous theoretical and experimental work. Some numerical solutions are obtained for illustration.


1988 ◽  
Vol 186 ◽  
pp. 129-146 ◽  
Author(s):  
John Miles ◽  
Janet Becker

The variational formulation of the nonlinear wavemaker problem, previously applied (Miles 1988) to cross-waves in a short tank, is extended to allow for slow spatial, as well as slow temporal, variation of cross-waves in a long tank. The resulting evolution equations for the envelope of the cross-waves are equivalent to those derived by Jones (1984) and may be combined to obtain a cubic Schrödinger equation in a semi-infinite domain. The corresponding criterion for the stability of plane waves (i.e. for the temporal decay of cross-waves) agrees with Jones but differs from Mahony (1972). Weak damping is incorporated, and those stationary envelopes that are evanescent at large distances from the wavemaker are determined through analytical approximations and numerical integration and compared with the experimental observations of Barnard & Pritchard (1972) and the numerical calculations of Lichter & Chen (1987). These comparisons suggest that stationary envelopes with either no or one maximum are stable for sufficiently small amplitudes (solutions with multiple maxima may be stable but more difficult to attain) and evolve into limit cycles for somewhat larger amplitudes, but the analytical question of stability remains open.


Sign in / Sign up

Export Citation Format

Share Document