Sensitivity of Internally-Generated Climate Oscillations to Ocean Model Formulation

1984 ◽  
pp. 653-667 ◽  
Author(s):  
L. D. D. Harvey ◽  
S. H. Schneider
2018 ◽  
Vol 31 (22) ◽  
pp. 9313-9333 ◽  
Author(s):  
John P. Krasting ◽  
Ronald J. Stouffer ◽  
Stephen M. Griffies ◽  
Robert W. Hallberg ◽  
Sergey L. Malyshev ◽  
...  

Abstract Oceanic heat uptake (OHU) is a significant source of uncertainty in both the transient and equilibrium responses to increasing the planetary radiative forcing. OHU differs among climate models and is related in part to their representation of vertical and lateral mixing. This study examines the role of ocean model formulation—specifically the choice of the vertical coordinate and the strength of the background diapycnal diffusivity Kd—in the millennial-scale near-equilibrium climate response to a quadrupling of atmospheric CO2. Using two fully coupled Earth system models (ESMs) with nearly identical atmosphere, land, sea ice, and biogeochemical components, it is possible to independently configure their ocean model components with different formulations and produce similar near-equilibrium climate responses. The SST responses are similar between the two models (r2 = 0.75, global average ~4.3°C) despite their initial preindustrial climate mean states differing by 0.4°C globally. The surface and interior responses of temperature and salinity are also similar between the two models. However, the Atlantic meridional overturning circulation (AMOC) responses are different between the two models, and the associated differences in ventilation and deep-water formation have an impact on the accumulation of dissolved inorganic carbon in the ocean interior. A parameter sensitivity analysis demonstrates that increasing the amount of Kd produces very different near-equilibrium climate responses within a given model. These results suggest that the impact of the ocean vertical coordinate on the climate response is small relative to the representation of subgrid-scale mixing.


2021 ◽  
Author(s):  
Clemens Spensberger ◽  
Trond Thorsteinsson ◽  
Thomas Spengler

Abstract. This paper introduces the idealised atmospheric circulation model Bedymo, which combines the quasi-geostrophic approximation and the hydrostatic primitive equations in one modelling framework. The model is designed such that the two systems of equations are solved as similarly as possible, such that differences can be unambiguously attributed to the different approximations, rather than the model formulation or the numerics. As a consequence, but in contrast to most other quasi-geostrophic models, Bedymo is using sigma-coordinates in the vertical. In addition to the atmospheric core, Bedymo also includes a slab ocean model and passive tracer module that will provide the basis for future idealised parametrisation of moisture and latent heat release. Further, Bedymo has a graphical user interface, making it particularly useful for teaching. Bedymo is evaluated for three atmosphere-only test cases and one coupled test case including the slab ocean component. The atmosphere-only test cases comprise the growth of a cyclonic disturbance in a baroclinic environment and the excitation of Rossby waves by isolated orography, both in a mid-latitude channel, as well as the simulation of a mid-latitude storm track. The atmosphere-ocean coupled test case is based on an equatorial channel and evaluates the coupled response to an isolated equatorial temperature anomaly in the ocean mixed layer. For all test cases, results agree well with expectations from theory and results obtained with more complex models.


2013 ◽  
Vol 26 (9) ◽  
pp. 2947-2956 ◽  
Author(s):  
Robert Hallberg ◽  
Alistair Adcroft ◽  
John P. Dunne ◽  
John P. Krasting ◽  
Ronald J. Stouffer

Abstract Two comprehensive Earth system models (ESMs), identical apart from their oceanic components, are used to estimate the uncertainty in projections of twenty-first-century sea level rise due to representational choices in ocean physical formulation. Most prominent among the formulation differences is that one (ESM2M) uses a traditional z-coordinate ocean model, while the other (ESM2G) uses an isopycnal-coordinate ocean. As evidence of model fidelity, differences in twentieth-century global-mean steric sea level rise are not statistically significant between either model and observed trends. However, differences between the two models’ twenty-first-century projections are systematic and both statistically and climatically significant. By 2100, ESM2M exhibits 18% higher global steric sea level rise than ESM2G for all four radiative forcing scenarios (28–49 mm higher), despite having similar changes between the models in the near-surface ocean for several scenarios. These differences arise primarily from the vertical extent over which heat is taken up and the total heat uptake by the models (9% more in ESM2M than ESM2G). The fact that the spun-up control state of ESM2M is warmer than ESM2G also contributes by giving thermal expansion coefficients that are about 7% larger in ESM2M than ESM2G. The differences between these models provide a direct estimate of the sensitivity of twenty-first-century sea level rise to ocean model formulation, and, given the span of these models across the observed volume of the ventilated thermocline, may also approximate the sensitivities expected from uncertainties in the characterization of interior ocean physical processes.


Author(s):  
Tido Semmler ◽  
Johann Jungclaus ◽  
Christopher Danek ◽  
Helge F Goessling ◽  
Nikolay Koldunov ◽  
...  

2021 ◽  
Author(s):  
Clemens Spensberger ◽  
Thomas Spengler

<div> <div> <div> <p>We introduce the idealised atmospheric circulation model Bedymo, which combines the quasi-geostrophic approximation and the hydrostatic primitive equations in one modelling framework. The model is designed such that the two systems of equations are solved as similarly as possible, such that differences can be unambiguously attributed to the different approximations, rather than the model formulation or the numerics. Using either approximation, Bedymo successfully simulates a mid-latitude atmospheric storm track and the stationary wave response to orographic forcing or diabatic heating.</p> <p>In addition to the atmospheric core, Bedymo also includes a slab ocean model and passive tracer module that could provide the basis for an idealised parametrisation of moisture and latent heat release. Further, Bedymo has a graphical user interface, making it particularly useful in teaching.</p> <p>In contrast to most other quasi-gestrophic models, Bedymo is using sigma-coordinates in the vertical. This is unique as it ensures mass continuity within the model domain and allows a more direct inclusion of orography. We point out several insights and potential pitfalls when deriving quasi-geostrophy in sigma-coordinates and show that it is possible to obtain a self-consistent set of equations.</p> </div> </div> </div>


2013 ◽  
Vol 66 ◽  
pp. 26-44 ◽  
Author(s):  
A. Romanou ◽  
W.W. Gregg ◽  
J. Romanski ◽  
M. Kelley ◽  
R. Bleck ◽  
...  

2021 ◽  
Author(s):  
Tido Semmler ◽  
Johann H Jungclaus ◽  
Christopher Danek ◽  
Helge Goessling ◽  
Nikolay V. Koldunov ◽  
...  

2018 ◽  
Vol 1 (1) ◽  
pp. 21-37
Author(s):  
Bharat P. Bhatta

This paper analyzes and synthesizes the fundamentals of discrete choice models. This paper alsodiscusses the basic concept and theory underlying the econometrics of discrete choice, specific choicemodels, estimation method, model building and tests, and applications of discrete choice models. Thiswork highlights the relationship between economic theory and discrete choice models: how economictheory contributes to choice modeling and vice versa. Keywords: Discrete choice models; Random utility maximization; Decision makers; Utility function;Model formulation


Sign in / Sign up

Export Citation Format

Share Document