diabatic heating
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 106)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Vol 3 (1) ◽  
pp. 21-44
Author(s):  
Sonja Murto ◽  
Rodrigo Caballero ◽  
Gunilla Svensson ◽  
Lukas Papritz

Abstract. Atmospheric blocking can influence Arctic weather by diverting the mean westerly flow and steering cyclones polewards, bringing warm, moist air to high latitudes. Recent studies have shown that diabatic heating processes in the ascending warm conveyor belt branch of extratropical cyclones are relevant to blocking dynamics. This leads to the question of the extent to which diabatic heating associated with mid-latitude cyclones may influence high-latitude blocking and drive Arctic warm events. In this study we investigate the dynamics behind 50 extreme warm events of wintertime high-Arctic temperature anomalies during 1979–2016. Classifying the warm events based on blocking occurrence within three selected sectors, we find that 30 of these events are associated with a block over the Urals, featuring negative upper-level potential vorticity (PV) anomalies over central Siberia north of the Ural Mountains. Lagrangian back-trajectory calculations show that almost 60 % of the air parcels making up these negative PV anomalies experience lifting and diabatic heating (median 11 K) in the 6 d prior to the block. Further, almost 70 % of the heated trajectories undergo maximum heating in a compact region of the mid-latitude North Atlantic, temporally taking place between 6 and 1 d before arriving in the blocking region. We also find anomalously high cyclone activity (on average five cyclones within this 5 d heating window) within a sector northwest of the main heating domain. In addition, 10 of the 50 warm events are associated with blocking over Scandinavia. Around 60 % of the 6 d back trajectories started from these blocks experience diabatic heating, of which 60 % undergo maximum heating over the North Atlantic but generally closer to the time of arrival in the block and further upstream relative to heated trajectories associated with Ural blocking. This study suggests that, in addition to the ability of blocks to guide cyclones northwards, Atlantic cyclones play a significant role in the dynamics of high-latitude blocking by providing low-PV air via moist-diabatic processes. This emphasizes the importance of the mutual interactions between mid-latitude cyclones and Eurasian blocking for wintertime Arctic warm extremes.


MAUSAM ◽  
2022 ◽  
Vol 44 (4) ◽  
pp. 321-328
Author(s):  
KSHUDIRAM SAHA ◽  
R SURANJANA SAHA

Based on MONEX-,1979 data over the Arabian Sea, the paper analyses observationally the structure, development and movement of a vortex which formed during onset of the monsoon around mid-June near the coast of Kerala developed into a cyclonic storm at mid-sea and moved towards the coast of Oman to die out there Heat budget computations bring out the differential behaviour of the different quadrants of the disturbance and appear to highlight the contrasting features between the northwestern and the other quadrants in regard to vertical. distributions of diabatic heating, local temperature tendency thermal advection and adiabatic heating or cooling. The study reveals an interaction of the vortex with two eastward-propagating subtropical westerly troughs which might have contributed significantly to its explosive development (decay) through warm (cold) advection. Both barotropic and baroclinic energy conversions appear to supply energy to the storm; though there appears to be a dominance of one over the other at different stages of development and at different heights. It seems likely that condensation heating also contributed to development of the storm.


2021 ◽  
pp. 1-54

Abstract It has been suggested that summer rainfall over Central Asia (CA) is significantly correlated with the summer thermal distribution of the Tibetan Plateau (TP) and the Indian summer monsoon (ISM). However, relatively few studies have investigated their synergistic effects of different distribution. This study documents the significant correlations between precipitation in CA and the diabatic heating of TP and the ISM based on the results of statistical analysis and numerical simulation. Precipitation in CA is is dominated by two water vapor transport branches from the south which are related to the two primary modes of anomalous diabatic heating distribution related to the TP and ISM precipitation, that is, the “+-” dipole mode in the southeastern TP and the Indian subcontinent (IS), and the “+-+” tripole mode in the southeastern TP, the IS, and southern India. Both modes exhibit obvious mid-latitude Silk Road pattern (SRP) wave trains with cyclone anomalies over CA, but with different transient and stationary eddies over south Asia. The different locations of anomalous anticyclones over India govern two water vapor transport branches to CA, which are from the Arabian Sea and the Bay of Bengal. The water vapor flux climbs while being transported northward and can be transported to CA with the cooperation of cyclonic circulation. The convergent water vapor and ascending motion caused by cyclonic anomalies favor the precipitation in CA. Further analysis corroborates the negative South Indian Ocean Dipole (NSIOD) in February could affect the tripole mode distribution of TP heating and ISM via the atmospheric circulation, water vapor transport and an anomalous Hadley cell circulation. The results indicate a reliable prediction reference for precipitation in CA.


Author(s):  
Tom Dörffel ◽  
Ariane Papke ◽  
Rupert Klein ◽  
Natalia Ernst ◽  
Piotr K. Smolarkiewicz

AbstractPäschke et al. (J Fluid Mech, 2012) studied the nonlinear dynamics of strongly tilted vortices subject to asymmetric diabatic heating by asymptotic methods. They found, inter alia, that an azimuthal Fourier mode 1 heating pattern can intensify or attenuate such a vortex depending on the relative orientation of the tilt and the heating asymmetries. The theory originally addressed the gradient wind regime which, asymptotically speaking, corresponds to vortex Rossby numbers of order unity in the limit. Formally, this restricts the applicability of the theory to rather weak vortices. It is shown below that said theory is, in contrast, uniformly valid for vanishing Coriolis parameter and thus applicable to vortices up to low hurricane strengths. An extended discussion of the asymptotics as regards their physical interpretation and their implications for the overall vortex dynamics is also provided in this context. The paper’s second contribution is a series of three-dimensional numerical simulations examining the effect of different orientations of dipolar diabatic heating on idealized tropical cyclones. Comparisons with numerical solutions of the asymptotic equations yield evidence that supports the original theoretical predictions of Päschke et al. In addition, the influence of asymmetric diabatic heating on the time evolution of the vortex centerline is further analyzed, and a steering mechanism that depends on the orientation of the heating dipole is revealed. Finally, the steering mechanism is traced back to the correlation of dipolar perturbations of potential temperature, induced by the vortex tilt, and vertical velocity, for which diabatic heating not necessarily needs to be responsible, but which may have other origins.


2021 ◽  
Author(s):  
Edgar Dolores-Tesillos ◽  
Franziska Teubler ◽  
Stephan Pfahl

Abstract. Strong low-level winds associated with extratropical cyclones can cause substantial impacts on society. The wind intensity and the spatial distribution of wind maxima may change in a warming climate; however, the involved changes in cyclone structure and dynamics are unclear. Here, such structural changes of strong North Atlantic cyclones in a warmer climate close to the end of the current century are investigated with storm-relative composites based on Community Earth System Model Large Ensemble (CESM-LENS) simulations. Furthermore, a piecewise potential vorticity inversion is applied to associate such changes in low-level winds to changes in potential vorticity (PV) anomalies at different levels. Projected changes in cyclone intensity are generally rather small. However, using cyclone-relative composites, we identify an extended wind footprint southeast of the center of strong cyclones, where the wind speed tends to intensify in a warmer climate. Both an amplified low-level PV anomaly driven by enhanced diabatic heating and a dipole change in upper-level PV anomalies contribute to this wind intensification. On the contrary, wind changes associated with lower- and upper-level PV anomalies mostly compensate each other upstream of the cyclone center. Wind changes at upper levels are dominated by changes in upper-level PV anomalies and the background flow. All together, our results indicate that a complex interaction of enhanced diabatic heating and altered non-linear upper-tropospheric wave dynamics shape future changes in near-surface winds in North Atlantic cyclones.


2021 ◽  
Author(s):  
Shuheng Lin ◽  
Song Yang ◽  
Shan He ◽  
Zhenning Li ◽  
Jiaxin Chen ◽  
...  

AbstractAtmospheric diabatic heating, a major driving force of atmospheric circulation over the tropics, is strongly confined to the tropical western North Pacific (TWNP) region, with the global warmest sea surface temperature (SST). The changes in diabatic heating over the TWNP, which exert great impacts on the global climate system, have recently exhibited a noticeable seasonal dependence with a remarkable increase in boreal spring. In this study, we applied observations, reanalysis data, and numerical experiments to investigate the causes of the seasonality in heating changes. Results show that in boreal spring convection is more sensitive to the TWNP SST, leading to a more significant enhancement of deep convection, although the increase in the SST is nearly the same as that in the other seasons. In the non-spring seasons, the enhanced convection due to increased local SST is suppressed by the anomalous anticyclonic wind shear over the TWNP, generated by the easterly wind anomalies induced by the tropical Indian Ocean (TIO) warming via the Kevin waves. However, the TIO warming does not show any suppressing effect in spring because it is much weaker than that in the other seasons and thus the warming itself cannot induce sufficient convective heating anomalies to excite the Kelvin waves.


2021 ◽  
Author(s):  
Yongkun Xie ◽  
Guoxiong Wu ◽  
Yimin Liu ◽  
Jianping Huang ◽  
Hanbin Nie

AbstractInvestigating the contrast between wintertime warming in the Arctic and cooling in Eurasia is of great importance for understanding regional climate change. In this study, we propose a dynamic and thermodynamic coupling view of the linkages between wintertime Arctic warming and Eurasian cooling since 1979. The key factors are the energy budget at the Earth’s surface, the diabatic heating and baroclinicity of the atmosphere, and subsurface ocean heat. A summertime origin of wintertime Arctic warming suggests a partial driving role of the Arctic in wintertime Eurasian cooling. The reasons for this finding are as follows. First, there is a dipole pattern in the diabatic heating change in winter over the Arctic Ocean corresponding to the anticyclonic circulation that links Eurasian cooling and Arctic warming. Second, the change in diabatic heating of the atmosphere is determined by sensible heat at the Earth’s surface through vertical diffusion. Third, the positive sensible heat change in the eastern Arctic sector in winter originates from the summertime enhanced absorption of solar radiation by the subsurface ocean over the sea ice loss region. Meanwhile, the negative sensible heat change in the western Arctic sector and wide Arctic warming can be explained by the circulation development triggered by the change in the east. Additionally, the background strong baroclinicity of the atmosphere in mid-high latitudes and corresponding two-way Arctic and mid-latitude interactions are necessary for circulation development in winter. Furthermore, the seasonality of the changes indicates that Eurasian cooling occurs only in winter because the diabatic heating change in the Arctic is strongest in winter. Overall, the comprehensive mechanisms from the summertime Earth’s surface and subsurface ocean to the wintertime atmosphere suggest a driving role of the Arctic. Note that the situation in interannual variability is more complex than the overall trend because the persistence of the influence of summertime sea ice is weakly established in terms of interannual variability.


Author(s):  
Gilles Bellon ◽  
Beatriz Reboredo

Abstract We investigate the steady dynamical response of the atmosphere on the equatorial β-plane to a steady, localized, mid-tropospheric heating source. Following Part I which investigates the case of an equatorial diabatic heating, we explore the sensitivity of the Gill circulation to the latitudinal location of the heating, together with the sensitivity to its horizontal scale. Again, we focus on characteristics of the response which would be particularly important if the circulation interacted with the hydrologic and energy cycles: overturning circulation and low-level wind. In the off-equatorial case, the intensity of the overturning circulation has the same limit as in the equatorial case for small horizontal extent of the diabatic heating, which is also the limit in the f-plane case. The decrease in this intensity with increasing horizontal scale of the diabatic heating is slightly faster in the off-equatorial case than in the equatorial case, which is due to the increase of rotational winds at the expense of divergent winds. The low-level westerly jet is more intense than in the equatorial case, with larger maximum wind and eastward mass transport that tend to infinity for small horizontal extent of the diabatic heating. In terms of spatial characteristics, this jet has a similar latitudinal extent as in the equatorial case but, unlike in the equatorial case, it extends further equatorward than poleward of the diabatic-heating center. It also extends further eastward than in the equatorial case.


Author(s):  
Beatriz Reboredo ◽  
Gilles Bellon

Abstract We investigate the steady dynamical response of the atmosphere on the equatorial β-plane to a steady, localized, mid-tropospheric heating source at the equator. Expanding Gill (1980)’s seminal work, we vary the latitudinal and longitudinal scales of the diabatic heating pattern while keeping its total amount fixed. We focus on characteristics of the response which would be particularly important if the circulation interacted with the hydrologic and energy cycles: the overturning circulation and the low-level wind. In the limit of very small scale in either the longitudinal or latitudinal direction, the vertical energy transport balances the diabatic heating and this sets the intensity of the overturning circulation. In this limit, a fast low-level westerly jet is located around the center of diabatic heating. With increasing longitudinal or latitudinal scale of the diabatic heating, the intensity of the overturning circulation decreases and the low-level westerly jet decreases in maximum velocity and spatial extent relative to the spatial extent of this heating. The associated low-level eastward mass transport decreases only with increasing longitudinal scale. These results suggest that moisture-convergence feedbacks will favor small-scale equatorial convective disturbances while surface-heat-flux feedbacks would favor small-scale disturbances in mean westerlies and large-scale disturbances in mean easterlies. Part II investigates the case of off-equatorial heating.


2021 ◽  
Author(s):  
Abdullah A. Fahad ◽  
Natalie J. Burls

AbstractSouthern hemisphere subtropical anticyclones are projected to change in a warmer climate during both austral summer and winter. A recent study of CMIP 5 & 6 projections found a combination of local diabatic heating changes and static-stability-induced changes in baroclinic eddy growth as the dominant drivers. Yet the underlying mechanisms forcing these changes still remain uninvestigated. This study aims to enhance our mechanistic understanding of what drives these Southern Hemisphere anticyclones changes during both seasons. Using an AGCM, we decompose the response to CO2-induced warming into two components: (1) the fast atmospheric response to direct CO2 radiative forcing, and (2) the slow atmospheric response due to indirect sea surface temperature warming. Additionally, we isolate the influence of tropical diabatic heating with AGCM added heating experiments. As a complement to our numerical AGCM experiments, we analyze the Atmospheric and Cloud Feedback Model Intercomparison Project experiments. Results from sensitivity experiments show that slow subtropical sea surface temperature warming primarily forces the projected changes in subtropical anticyclones through baroclinicity change. Fast CO2 atmospheric radiative forcing on the other hand plays a secondary role, with the most notable exception being the South Atlantic subtropical anticyclone in austral winter, where it opposes the forcing by sea surface temperature changes resulting in a muted net response. Lastly, we find that tropical diabatic heating changes only significantly influence Southern Hemisphere subtropical anticyclone changes through tropospheric wind shear changes during austral winter.


Sign in / Sign up

Export Citation Format

Share Document