Precise Orbit Determination of Navigation Satellite Using Joint Data from Regional Tracking Station and LEO

Author(s):  
Laiping Feng ◽  
Rengui Ruan ◽  
Xianbing Wu ◽  
Bijiao Sun
Sensors ◽  
2013 ◽  
Vol 13 (3) ◽  
pp. 2911-2928 ◽  
Author(s):  
Lina He ◽  
Maorong Ge ◽  
Jiexian Wang ◽  
Jens Wickert ◽  
Harald Schuh

2021 ◽  
Vol 13 (15) ◽  
pp. 3033
Author(s):  
Hui Wei ◽  
Jiancheng Li ◽  
Xinyu Xu ◽  
Shoujian Zhang ◽  
Kaifa Kuang

In this paper, we propose a new reduced-dynamic (RD) method by introducing the second-order time-difference position (STP) as additional pseudo-observations (named the RD_STP method) for the precise orbit determination (POD) of low Earth orbiters (LEOs) from GPS observations. Theoretical and numerical analyses show that the accuracies of integrating the STPs of LEOs at 30 s intervals are better than 0.01 m when the forces (<10−5 ms−2) acting on the LEOs are ignored. Therefore, only using the Earth’s gravity model is good enough for the proposed RD_STP method. All unmodeled dynamic models (e.g., luni-solar gravitation, tide forces) are treated as the error sources of the STP pseudo-observation. In addition, there are no pseudo-stochastic orbit parameters to be estimated in the RD_STP method. Finally, we use the RD_STP method to process 15 days of GPS data from the GOCE mission. The results show that the accuracy of the RD_STP solution is more accurate and smoother than the kinematic solution in nearly polar and equatorial regions, and consistent with the RD solution. The 3D RMS of the differences between the RD_STP and RD solutions is 1.93 cm for 1 s sampling. This indicates that the proposed method has a performance comparable to the RD method, and could be an alternative for the POD of LEOs.


2018 ◽  
Vol 56 (6) ◽  
pp. 3148-3158 ◽  
Author(s):  
Sergei Rudenko ◽  
Mathis BloBfeld ◽  
Horst Muller ◽  
Denise Dettmering ◽  
Detlef Angermann ◽  
...  

2017 ◽  
Vol 9 (8) ◽  
pp. 810 ◽  
Author(s):  
Ming Chen ◽  
Yang Liu ◽  
Jiming Guo ◽  
Weiwei Song ◽  
Peng Zhang ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3189
Author(s):  
Min Li ◽  
Tianhe Xu ◽  
Haibo Ge ◽  
Meiqian Guan ◽  
Honglei Yang ◽  
...  

The precise orbit determination (POD) accuracy of the Chinese BeiDou Navigation Satellite System (BDS) is still not comparable to that of the Global Positioning System because of the unfavorable geometry of the BDS and the uneven distribution of BDS ground monitoring stations. Fortunately, low Earth orbit (LEO) satellites, serving as fast moving stations, can efficiently improve BDS geometry. Nearly all studies on Global Navigation Satellite System POD enhancement using large LEO constellations are based on simulations and their results are usually overly optimistic. The receivers mounted on a spacecraft or an LEO satellite are usually different from geodetic receivers and the observation conditions in space are more challenging than those on the ground. The noise level of spaceborne observations needs to be carefully calibrated. Moreover, spaceborne observational errors caused by space weather events, i.e., solar geomagnetic storms, are usually ignored. Accordingly, in this study, the actual spaceborne observation noises are first analyzed and then used in subsequent observation simulations. Then, the observation residuals from the actual-processed LEO POD during a solar storm on 8 September 2017 are extracted and added to the simulated spaceborne observations. The effect of the observational errors on the BDS POD augmented with different LEO constellation configurations is analyzed. The results indicate that the noise levels from the Swarm-A, GRACE-A, and Sentinel-3A satellites are different and that the carrier-phase measurement noise ranges from 2 mm to 6 mm. Such different noise levels for LEO spaceborne observations cause considerable differences in the BDS POD solutions. Experiments calculating the augmented BDS POD for different LEO constellations considering spaceborne observational errors extracted from the solar storm indicate that these errors have a significant influence on the accuracy of the BDS POD. The 3D root mean squares of the BDS GEO, IGSO, and MEO satellite orbits are 1.30 m, 1.16 m, and 1.02 m, respectively, with a Walker 2/1/0 LEO constellation, and increase to 1.57 m, 1.72 m, and 1.32 m, respectively, with a Walker 12/3/1 constellation. When the number of LEO satellites increases to 60, the precision of the BDS POD improves significantly to 0.89 m, 0.77 m, and 0.69 m for the GEO, IGSO, and MEO satellites, respectively. While 12 satellites are sufficient to enhance the BDS POD to the sub-decimeter level, up to 60 satellites can effectively reduce the influence of large spaceborne observational errors, i.e., from solar storms.


2009 ◽  
Vol 26 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Yoo-La Hwang ◽  
Byoung-Sun Lee ◽  
Jae-Hoon Kim ◽  
Jae-Cheol Yoon

Sign in / Sign up

Export Citation Format

Share Document