Solving Nonlinear Schrodinger Equation with Variable Coefficient Using Homotopy Perturbation Method

Author(s):  
Nazatulsyima Mohd Yazid ◽  
Kim Gaik Tay ◽  
Yaan Yee Choy ◽  
Azila Md Sudin
2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Emad K. Jaradat ◽  
Omar Alomari ◽  
Mohammad Abudayah ◽  
Ala’a M. Al-Faqih

The Laplace-Adomian Decomposition Method (LADM) and Homotopy Perturbation Method (HPM) are both utilized in this research in order to obtain an approximate analytical solution to the nonlinear Schrödinger equation with harmonic oscillator. Accordingly, nonlinear Schrödinger equation in both one and two dimensions is provided to illustrate the effects of harmonic oscillator on the behavior of the wave function. The available literature does not provide an exact solution to the problem presented in this paper. Nevertheless, approximate analytical solutions are provided in this paper using LADM and HPM methods, in addition to comparing and analyzing both solutions.


2021 ◽  
pp. 2150194
Author(s):  
Zhi-Qiang Li ◽  
Shou-Fu Tian ◽  
Tian-Tian Zhang ◽  
Jin-Jie Yang

Based on inverse scattering transformation, a variable-coefficient fifth-order nonlinear Schrödinger equation is studied through the Riemann–Hilbert (RH) approach with zero boundary conditions at infinity, and its multi-soliton solutions with [Formula: see text] distinct arbitrary-order poles are successfully derived. By deriving the eigenfunction and scattering matrix, and revealing their properties, a RH problem (RHP) is constructed based on inverse scattering transformation. Via solving the RHP, the formulae of multi-soliton solutions are displayed when the reflection coefficient possesses [Formula: see text] distinct arbitrary-order poles. Finally, some appropriate parameters are selected to analyze the interaction of multi-soliton solutions graphically.


Sign in / Sign up

Export Citation Format

Share Document