Accurate and Robust Iris Recognition Using Modified Classical Hough Transform

Author(s):  
Megha Chhabra ◽  
Ayush Goyal
2018 ◽  
Vol 15 (2) ◽  
pp. 739-743 ◽  
Author(s):  
Noor Amjed ◽  
Fatimah Khalid ◽  
Rahmita Wirza O. K. Rahmat ◽  
Hizmawati Binit Madzin

Iris segmentation methods work based on ideal imaging conditions which produce good output results. However, the segmentation accuracy of an iris recognition system significantly influences its performance, especially with data that captured in unconstrained environment of the Smartphone. This paper proposes a novel segmentation method for unconstrained environment of the Smartphone videos based on choose the best frames from the videos and try to enhance the contrast of this frames by applying the two fuzzy logic membership functions on the negative image which delimit between dark and bright regions in able to make the dark region darker and the bright region brighter. This pre-processing step Facilitates the work of the Weighted Adaptive Hough Transform to automatically find the diameter of the iris region to apply the osiris v4.1. The proposed method results on the video of (Mobile Iris Challenge Evaluation (MICHE))-I, iris databases indicate a high level of accuracy and more efficient computationally using the proposed technique.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Chen-Chung Liu ◽  
Pei-Chung Chung ◽  
Chia-Ming Lyu ◽  
Jui Liu ◽  
Shyr-Shen Yu

One of the key steps in the iris recognition system is the accurate iris segmentation from its surrounding noises including pupil, sclera, eyelashes, and eyebrows of a captured eye-image. This paper presents a novel iris segmentation scheme which utilizes the orientation matching transform to outline the outer and inner iris boundaries initially. It then employs Delogne-Kåsa circle fitting (instead of the traditional Hough transform) to further eliminate the outlier points to extract a more precise iris area from an eye-image. In the extracted iris region, the proposed scheme further utilizes the differences in the intensity and positional characteristics of the iris, eyelid, and eyelashes to detect and delete these noises. The scheme is then applied on iris image database, UBIRIS.v1. The experimental results show that the presented scheme provides a more effective and efficient iris segmentation than other conventional methods.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1975-1983

Now days, for the identification of personal information of a person, biometrics is mostly used. Also for the personal identification, the recognition of eye based biometric feature extraction is the most powerful tool. The biometric is an important identity to identify the individual. But in real time it is quite difficult to capture the better quality of iris images. The images obtained are more degraded due to the lack of texture, blur. In this paper, more convenient method is presented for extracting the features of biometric images. The method Iris Recognition at-a Distance (IAAD) is used to extract the iris features of biometric image and to enhance the quality of an image in a biometric system. The Chronological Monarch Butterfly Optimization -based Deep Belief Network (Chronological MBO-based DBN) is proposed for iris recognition to get better accuracy. The Monarch Butterfly Optimization algorithm is used to arrange the Chronological assumption of an iris image. Also, the Hough Transform algorithm is used for detection of iris circle and edge. The scaT T loop descriptor and the Local Gradient Pattern (LGP) are used for feature extraction, which is fed to the Chronological MBO-based DBN for iris recognition that enhances the accuracy. The Daugman’s rubber sheet model, median filter and trained neural network are used for normalization and segmentation. The UBIRIS.v1 database is used to take an iris recognition images and MATLAB is used for programming of for reading the iris images and for performing the Hough transform operations. The iris recognition at a distance 4 to 8 meter is done with the help of simulation result. The performance is analyzed based on the metrics, like False Acceptance Rate (FAR), accuracy, and False Rejection Rate (FRR) with the value of 0.4847%, 96.078%, and 0.4745%


Now a days, Iris recognition is wieldy used for the identification of person. The superior bit of 1 countries exploits biometric system for safety reason with the conclusion goal that in runway boarding, custom freedom, gathering passage, etc. The Iris detection at-a-Distance (IAAD) framework is generally used to identify the person in most of the applications. In this system, different features of iris image are extracted in addition enhances the superiority of iris image. Over the span of the most recent ages there consume raised various structures to design and finish iris affirmation systems which works at longer separation going from one meter to sixty meter. Because of such long scope of iris detection schemes in addition iris attainment scheme provides for the best applications to the client. Therefore, It is necessary to design an effective algorithm for IAAD is necessary. In this article, an actual method for iris recognition is presents. A Chronological Monarch Butterfly Optimization -based Deep Belief Network (Chronological MBO-based DBN) technique is anticipated for iris detection.This technique algorithm is the combination of Chronological theory with the Monarch Butterfly Optimization. It is utilized to mastermind the sequential presumption of an iris picture. Additionally, the Hough Transform calculation is utilized for discovery of iris circle and edge. To enhance the accuracy of anticipated iris recognition system ScatT-Loop descriptor and the Local Gradient Pattern (LGP) are fed to the Chronological MBO-based DBN algorithm and these are castoff to abstract the dissimilar features of an iris picture. The dataset used for these tactices are UBIRIS.v1 For the normalization and segmentation of an iris image is done by by means of Dougman's rubber sheet model. This system is established on MATLAB for executing the Hough transform procedures also for reading the iris images. The simulation results shows that this system successfully recognize the iris at a distance 4 to 8 meter. Different performance parameters like as FAR accuracy, too FRR shows better results in this anticipated work.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Long-yang Huang ◽  
Li-qiang Zhang ◽  
Xiao-li Duan

In view of the problem of unstable recognition effect and low robustness of a traditional iris location algorithm, an iris location algorithm based on union-find-set and block search is proposed. Firstly, the inner circle of the iris is roughly positioned by the method of retrieval, and then, the Hough transform is used to accurately locate the pupil. After that, the convolution operation is used to roughly locate the outer circle, and then, the original image is partitioned to search. And the grayscale change in the gray histogram of the screenshot is observed to accurately locate the outer circle. The obtained iris and the iris obtained by the traditional localization algorithm are processed by the same iris recognition algorithm. The results show that the proposed image is more effective in image recognition and has good robustness.


Author(s):  
Bounegta Nadia ◽  
Bassou Abdessalam ◽  
Beladgham Mohamed

<p><span>The biometric system is based on human’s behavioral and physical characteristics. Among all of these, iris has unique structure, higher accuracy and it can remain stable over a person’s life. Iris recognition is the method by which system recognize a person by their unique identical feature found in the iris. Iris recognition technology includes four subsections as, capturing of the iris image, segmentation, extraction of the needed features and matching. This paper is a detail description of eyelids; eyelashes detection technique and Hough transform method applied on iris image. </span></p>


Current iris recognition schemes such as IntegroDifferential method, Hough Transform, Watershed Transform Circle Fitting, and Circular Hough Transformation (CHT) are used to find circular parameters between pupil and iris. Segmentation process of an eye image using the circular parameters toextracts the iris region still can be further improved. In this paper, we introduced an optimization method of circular parameters detection for iris segmentation based on Black Hole Algorithm (BHA). The proposed segmentation algorithm utilizes a computational model of the pixels’ value to detect the iris boundary. The BHA searches for center radius of both pupil and iris. The system tests the CASIA Iris Interval V3 database by on MATLAB. The segmented images show an accuracy of 98.3%. In short, the segmentation-based on BHA is efficient to identify the iris for any future access control applications.


Sign in / Sign up

Export Citation Format

Share Document