Experimental Investigation on Navigation of Mobile Robot Using Ant Colony Optimization

Author(s):  
A. Mallikarjuna Rao ◽  
K. Ramji ◽  
B. S. K. Sundara Siva Rao
2020 ◽  
Vol 17 (3) ◽  
pp. 165-173
Author(s):  
C.O. Yinka-Banjo ◽  
U. Agwogie

This article presents the implementation and comparison of fruit fly optimization (FOA), ant colony optimization (ACO) and particle swarm optimization (PSO) algorithms in solving the mobile robot path planning problem. FOA is one of the newest nature-inspired algorithms while PSO and ACO has been in existence for a long time. PSO has been shown by other studies to have long search time while ACO have fast convergence speed. Therefore there is need to benchmark FOA performance with these older nature-inspired algorithms. The objective is to find an optimal path in an obstacle free static environment from a start point to the goal point using the aforementioned techniques. The performance of these algorithms was measured using three criteria: average path length, average computational time and average convergence speed. The results show that the fruit fly algorithm produced shorter path length (19.5128 m) with faster convergence speed (3149.217 m/secs) than the older swarm intelligence algorithms. The computational time of the algorithms were in close range, with ant colony optimization having the minimum (0.000576 secs). Keywords:  Swarm intelligence, Fruit Fly algorithm, Ant Colony Optimization, Particle Swarm Optimization, optimal path, mobile robot.


2015 ◽  
Vol 776 ◽  
pp. 396-402 ◽  
Author(s):  
Nukman Habib ◽  
Adi Soeprijanto ◽  
Djoko Purwanto ◽  
Mauridhi Hery Purnomo

The ability of mobile robot to move about the environment from initial position to the goal position, without colliding the obstacles is needed. This paper presents about motion planning of mobile robot (MR) in obstacles-filled workspace using the modified Ant Colony Optimization (M-ACO) algorithm combined with the point to point (PTP) motion in achieving the static goal. Initially, MR try to plan the path to reach a goal, but since there are obstacles on the path will be passed through so nodes must be placed around the obstacles. Then MR do PTP motion through this nodes chosen by M-ACO, in order to form optimal path from the choice nodes until the last node that is free from obstacles. The proposed approach shows that MR can not only avoid collision with obstacle but also make a global planning path. The simulation result have shown that the proposed algorithm is suitable for MR motion planning in the complex environments with less running time.


Sign in / Sign up

Export Citation Format

Share Document