An Automatic Feature Learning and Fault Diagnosis Method Based on Stacked Sparse Autoencoder

Author(s):  
Yumei Qi ◽  
Changqing Shen ◽  
Jie Liu ◽  
Xuwei Li ◽  
Dading Li ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Sohaib ◽  
Jong-Myon Kim

Due to enhanced safety, cost-effectiveness, and reliability requirements, fault diagnosis of bearings using vibration acceleration signals has been a key area of research over the past several decades. Many fault diagnosis algorithms have been developed that can efficiently classify faults under constant speed conditions. However, the performances of these traditional algorithms deteriorate with fluctuations of the shaft speed. In the past couple of years, deep learning algorithms have not only improved the classification performance in various disciplines (e.g., in image processing and natural language processing), but also reduced the complexity of feature extraction and selection processes. In this study, using complex envelope spectra and stacked sparse autoencoder- (SSAE-) based deep neural networks (DNNs), a fault diagnosis scheme is developed that can overcome fluctuations of the shaft speed. The complex envelope spectrum made the frequency components associated with each fault type vibrant, hence helping the autoencoders to learn the characteristic features from the given input signals more readily. Moreover, the implementation of SSAE-DNN for bearing fault diagnosis has avoided the need of handcrafted features that are used in traditional fault diagnosis schemes. The experimental results demonstrate that the proposed scheme outperforms conventional fault diagnosis algorithms in terms of fault classification accuracy when tested with variable shaft speed data.


2021 ◽  
pp. 095745652110557
Author(s):  
Lifeng Chan ◽  
Chun Cheng

Detecting the mechanical faults of rotating machinery in time plays a key role in avoiding accidents. With the coming of the big data era, intelligent fault diagnosis methods based on machine learning models have become promising tools. To improve the feature learning ability, an unsupervised sparse feature learning method called variant sparse filtering is developed. Then, a fault diagnosis method combining variant sparse filtering with a back-propagation algorithm is presented. The involvement of the back-propagation algorithm can further optimize the weight matrix of variant sparse filtering using label data. At last, the developed diagnosis method is validated by rolling bearing and planetary gearbox experiments. The experiment results indicate that the developed method can achieve high accuracy and good stability in rotating machinery fault diagnosis.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Hongmei Liu ◽  
Lianfeng Li ◽  
Jian Ma

The main challenge of fault diagnosis lies in finding good fault features. A deep learning network has the ability to automatically learn good characteristics from input data in an unsupervised fashion, and its unique layer-wise pretraining and fine-tuning using the backpropagation strategy can solve the difficulties of training deep multilayer networks. Stacked sparse autoencoders or other deep architectures have shown excellent performance in speech recognition, face recognition, text classification, image recognition, and other application domains. Thus far, however, there have been very few research studies on deep learning in fault diagnosis. In this paper, a new rolling bearing fault diagnosis method that is based on short-time Fourier transform and stacked sparse autoencoder is first proposed; this method analyzes sound signals. After spectrograms are obtained by short-time Fourier transform, stacked sparse autoencoder is employed to automatically extract the fault features, and softmax regression is adopted as the method for classifying the fault modes. The proposed method, when applied to sound signals that are obtained from a rolling bearing test rig, is compared with empirical mode decomposition, Teager energy operator, and stacked sparse autoencoder when using vibration signals to verify the performance and effectiveness of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Changfan Zhang ◽  
Xiang Cheng ◽  
Jianhua Liu ◽  
Jing He ◽  
Guangwei Liu

The model is difficult to establish because the principle of the locomotive adhesion process is complex. This paper presents a data-driven adhesion status fault diagnosis method based on deep learning theory. The adhesion coefficient and creep speed of a locomotive constitute the characteristic vector. The sparse autoencoder unsupervised learning network studies the input vector, and the single-layer network is superimposed to form a deep neural network. Finally, a small amount of labeled data is used to fine-tune training the entire deep neural network, and the locomotive adhesion state fault diagnosis model is established. Experimental results show that the proposed method can achieve a 99.3% locomotive adhesion state diagnosis accuracy and satisfy actual engineering monitoring requirements.


2017 ◽  
Vol 31 (9) ◽  
pp. e2912 ◽  
Author(s):  
Feiya Lv ◽  
Chenglin Wen ◽  
Meiqin Liu ◽  
Zhejing Bao

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ran Han ◽  
Rongjie Wang ◽  
Guangmiao Zeng

In order to realize the unsupervised extraction and identification of fault features in power electronic circuits, we proposed a fault diagnosis method based on sparse autoencoder (SAE) and broad learning system (BLS). Firstly, the feature is extracted by the sparse autoencoder, and the fault samples and feature vectors are combined as the input of the broad learning system. The broad learning system is trained based on the error precision step update method, and the system is used to the fault type identification. The simulation results of the thyristor fault diagnosis of the three-phase bridge rectifier circuit show that the method is effective and has better performance than other traditional methods.


Sign in / Sign up

Export Citation Format

Share Document