Heat Transfer and Mass Transfer in the Plasma Fluidized Bed

Author(s):  
Changming Du ◽  
Rongliang Qiu ◽  
Jujun Ruan
2021 ◽  
Vol 11 (3) ◽  
pp. 1159
Author(s):  
Mykola Yukhymenko ◽  
Artem Artyukhov ◽  
Ruslan Ostroha ◽  
Nadiia Artyukhova ◽  
Jan Krmela ◽  
...  

The article deals with the theoretical description and experimental study of the hydrodynamic and heat transfer properties regarding the operation of multistage gravitational devices of the fluidized bed with inclined perforated shelves. The peculiarities of the work and the implementation field of the multistage shelf units are described. A theoretical model to define the solubilizer’s velocity above the perforation holes, in the above-shelf space of the device and in the outloading gap, as well as the residence time of the dispersed phase at the stage (perforated shelf contact) of the device is presented. The results of experimental studies regarding the influence, made by the structural parameters of the perforated shelf contacts, on the distribution pattern of single-phase and gas-dispersed flows in the workspace of the device, on the intensity of interphase heat transfer are presented. The conditions to create active hydrodynamic operating modes of multistage gravitational shelf devices, which provide higher efficiency of heat-mass transfer processes, and with lower gas consumption and hydraulic resistance compared to typical fluidized bed devices, are proved. Peculiarities regarding the implementation of heat-mass transfer processes in multistage devices are described using heat treatment and drying processes as examples.


Author(s):  
Ahmmed Saadi Ibrehem

The complex flow patterns induced in fluidized bed catalytic reactors and the competing parameters affecting the mass and heat transfer characteristics makes the design of such reactors a challenging task to accomplish. The models of such a process rely heavily on predictive empirical correlations for mass and heat transfer coefficients. Unfortunately, published empirical based correlations have the common shortcoming of low-prediction efficiency compared with experimental data. In this work, an artificial neural network approach is used to capture the reactor characteristics in terms of heat and mass transfer based on published experimental data. The developed ANN-based heat and mass transfer coefficients relations were used in a conventional FCR model and simulated under industrial operating conditions. The hybrid model predictions of the melt-flow index and the emulsion temperature were compared to industrial measurements as well as published models. The predictive quality of the hybrid model was superior to other models. This modeling approach can be used as an alternative to conventional modeling methods.


Author(s):  
Leon R. Glicksman ◽  
M. Hyre ◽  
M.C. Lints ◽  
N. Decker

Author(s):  
Shoichiro Fukusako ◽  
Masahiko Yamada ◽  
Akihiko Horibe ◽  
T. Ohmichi

Sign in / Sign up

Export Citation Format

Share Document