Issues on Design Shear Strength of RC Deep Beams

Author(s):  
J. Leon Raj ◽  
G. Appa Rao
2014 ◽  
Vol 14 (1) ◽  
pp. 19-40 ◽  
Author(s):  
Panatchai Chetchotisak ◽  
Jaruek Teerawong ◽  
Sukit Yindeesuk ◽  
Junho Song

2013 ◽  
Vol 343 ◽  
pp. 21-26
Author(s):  
Raj J. Leon ◽  
G. Appa Rao

The behaviour of reinforced concrete deep beams is complex due to small shear span-to-depth ratios, which deviates its behaviour from the classical Bernoullis beam behaviour. Such behaviour is predominant in cases where members are supported over small spans carrying heavy concentrated or distributed loads. Such is the case in the structural members like pile cap, transfer girder, panel beam, strap beam in foundation, walls of rectangular water tank, shear wall etc. This paper reports on the influence of Poly propylene fibers combined with and without steel fibers on the stiffness, spall resistance and shear strength of RC deep beams. A total of 21 beams were tested to failure under two-point loading, which were compared with the ACI code provisions. The shear span-to-depth ratios adopted were 0.7 to 0.9 incorporating three steel fiber volume fractions of 0%, 1%, 1.25% along with two different fibers of Steel and Poly propylene with volume fractions of (1.0 + 0.0) %, and (1.0 + 1.0) %. The beams with shear span-to-depth ratios 0.7, 0.8 and 0.9 showed an increase of 21.9%, 23.43% and 23.9% in the ultimate load carrying capacity with combined steel and poly propylene fibers as replacement of web reinforcement with reference to that of the beam without web reinforcement. With the above combinations, the shear strength and stiffness of the beams have been found to be improved. When the horizontal shear reinforcement was increased, the shear strength was found to increase.


2003 ◽  
Vol 81 (5) ◽  
pp. 331-338 ◽  
Author(s):  
A.F. Ashour ◽  
L.F. Alvarez ◽  
V.V. Toropov

2021 ◽  
Vol 241 ◽  
pp. 112427
Author(s):  
Ye Li ◽  
Hui Chen ◽  
Wei-Jian Yi ◽  
Fei Peng ◽  
Zhe Li ◽  
...  

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Thuy-Anh Nguyen ◽  
Hai-Bang Ly ◽  
Hai-Van Thi Mai ◽  
Van Quan Tran

This study aims to predict the shear strength of reinforced concrete (RC) deep beams based on artificial neural network (ANN) using four training algorithms, namely, Levenberg–Marquardt (ANN-LM), quasi-Newton method (ANN-QN), conjugate gradient (ANN-CG), and gradient descent (ANN-GD). A database containing 106 results of RC deep beam shear strength tests is collected and used to investigate the performance of the four proposed algorithms. The ANN training phase uses 70% of data, randomly taken from the collected dataset, whereas the remaining 30% of data are used for the algorithms’ evaluation process. The ANN structure consists of an input layer with 9 neurons corresponding to 9 input parameters, a hidden layer of 10 neurons, and an output layer with 1 neuron representing the shear strength of RC deep beams. The performance evaluation of the models is performed using statistical criteria, including the correlation coefficient (R), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The results show that the ANN-CG model has the best prediction performance with R = 0.992, RMSE = 14.02, MAE = 14.24, and MAPE = 6.84. The results of this study show that the ANN-CG model can accurately predict the shear strength of RC deep beams, representing a promising and useful alternative design solution for structural engineers.


Sign in / Sign up

Export Citation Format

Share Document