ultimate shear strength
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 43)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Jitendra Bhatta ◽  
Joshua Mulligan ◽  
Rajesh P. Dhakal ◽  
Timothy J. Sullivan ◽  
Hans Gerlich ◽  
...  

This paper identifies the inherent strengths/weaknesses of rigid timber-framed partitions and quantifies the onset drifts for different damage thresholds under bi-directional seismic actions. It reports construction and quasi-static lateral cyclic testing of a multi-winged timber-framed partition wall specimen with details typical of New Zealand construction practice. Furthermore, the cyclic performance of the tested rigid timber-framed partition wall is also compared with that of similar partition walls incorporating ‘partly-sliding’ connectiondetails, and ‘seismic gaps’, previously tested under the same test setup. Based on the experimentally recorded cyclic performance measures, theoretical equations proposed/derived in the literature to predict the ultimate strength, initial stiffness, and drift capacity of different damage states are scrutinized, and some equations are updated in order to alleviate identified possible shortcomings. These theoretical estimates are then validated with the experimental results. It is found that the equations can reasonably predict the initial stiffness and ultimate shear strength of the partitions, as well as the onset-driftscorresponding to the screw damage and diagonal buckling failure mode of the plasterboard. The predicted bi-linear curve is also found to approximate the backbone curve of the tested partition wall sensibly.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012015
Author(s):  
S J S Hakim ◽  
M A H Mohd Rodzi ◽  
S S Ayop ◽  
S Shahidan ◽  
S N Mokhatar ◽  
...  

Abstract The primary purpose of reinforcing bar stirrups in a reinforced concrete beam is to improve shear strength. The FRP system may significantly improve a concrete beam’s ultimate shear strength, serviceability, and ductility. The application of FRP for the repair and reinforcement of the structures has become very popular due to its low weight, high tensile strength, and simplicity of installation on uneven surfaces. FRP material outperforms other traditional materials in strengthening applications due to its high strength-to-weight and stiffness-to-weight ratios, resistance to corrosion, and ease of handling. The overall objective of this research is to investigate and improve the understanding of the recent research in the area of shear FRP strengthening of reinforced concrete beams. In this paper, recent publications were reviewed to see how different anchoring procedures, different factors that affect FRP performance and different failure scenarios affect the shear strengthening of concrete beams. The benefits and limits of FRP systems, as well as some current research trends are discussed in this project. From the research, it can be stated that type of anchorage technique and different parameter give a different impact to failure mode of the beam.


2021 ◽  
Vol 1047 ◽  
pp. 214-219
Author(s):  
Kaho Suzuki ◽  
Atsushi Suzuki ◽  
Yoshihiro Kimura

In general, a steel beam is assembled with a concrete slab by shear connectors. The connection requires high stiffness and strength to secure the composite effect even in the ultimate state. Facing this need, perfobond shear connectors are attracting a great attention by virtue of its outstanding mechanical performance. However, the connector is subjected to the fully reversed cyclic stress between the compression and tension during an earthquake. Therefore, as presented in the earlier research addressing stud shear connectors, the concrete may originate cracks under the tensile stress; and eventually, the expected composite effect is not possibly performed. To address this concern, this research carried out a total of three fully reversed cyclic loading tests using the component model of perfobond shear connection. The parameters are the presence of reinforcing bars and concrete strength. In conclusion, it was found that perfobond shear connectors exhibit more stable mechanical behavior and capacity than stud shear connectors regardless of stress orientation due to a localized stress transfer mechanism that results in smaller cracks in the slab under a fully reversed cyclic loading.


CivilEng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 874-894
Author(s):  
Zine El Abidine Benzeguir ◽  
Omar Chaallal

Numerous studies on the size effect have been devoted to reinforced concrete (RC) beams. They have shown that increasing the beam size leads to a decrease in ultimate shear strength (stress) at failure. This is reflected in the design model of most current international codes and guidelines, where the size effect is taken into consideration by reducing concrete contribution to the shear resistance (force). In contrast, the size effect of RC beams strengthened with externally bonded (EB) fibre-reinforced polymer (FRP) is not fully documented, and very few experimental studies have been devoted to the phenomenon. The objective of this study was to evaluate the accuracy of the current code and guideline models in terms of the size effect on the EB-FRP contribution to shear resistance. To this end, a database of experimental findings on the size effect in EB-FRP-strengthened beams was built based on the reported literature, as well as our own experimental tests. The data were analysed and compared with the predictions of six current codes and design guidelines to assess their accuracy. Experimental results clearly revealed the presence of a size effect related to EB-FRP as well as the existence of interaction between internal stirrups and EB-CFRP. Based on analysis of the collected experimental test results, the study clearly revealed that the predictions of current codes and guidelines overestimate the contribution of EB-FRP systems to shear resistance. The size effect tends to exacerbate this overestimation as the effective depth (d) of the beams increases. Therefore, until the size effect for RC beams strengthened in shear with EB-FRP is captured by the prediction models, current codes and design guidelines are to be used with caution.


Author(s):  
Ali Kaveh ◽  
Armin Dadras Eslamlou ◽  
Roya Mahdipour Moghani

Despite the importance and accuracy of empirical models, most of the existing models are only accurate on the collected experimental data. Adding new data, or even considering noise or variance in the data leads to loss of model accuracy. The objective of this paper is to alleviate overfitting and develop a more accurate and reliable alternative method using a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting framework for the prediction of the ultimate shear strength of FRP-reinforced concrete beams without stirrups. To enhance the robustness of the results, make full use of training samples (without the validation set), and alleviate the randomness in selecting test samples, the K-Fold Cross Validation method is employed. Using a dataset including 205 samples, results show that the extreme gradient boosting framework (XGBoost) providing better prediction. In fact, XGBoost results have higher precision and higher generalization in comparison with the empirical equations, the current design codes of practice, Least Absolute Shrinkage and Selection Operator model (LASSO), and Random Forest model (RF).


2021 ◽  
Vol 11 (16) ◽  
pp. 7667
Author(s):  
Sang-Hyo Kim ◽  
Oneil Han ◽  
Suro Yoon ◽  
Tuguldur Boldoo

The steel–concrete composite structures consist of two different material parts, which are connected with reliable shear connectors to enable the combined action of the steel and concrete members. The shear connectors may experience either one-directional repeated cyclic loadings or fully reversed cyclic loadings depending on the structural functions and acting loadings. It is essential for structural engineers to estimate the residual shear strength of the shear connectors after action of repeated loads. The characteristics of deteriorating shear capacities of Y-type perfobond rib shear connectors under repeated loads were investigated to estimate the energy dissipating capacity as well as the residual shear strength after repeated loads. To perform the repeated load experiments four different intensities of repeated loads were selected based on the monotonic push-out tests which were performed with 15 specimens with five different design variables. The selected load levels range from 35% to 65% of the representative ultimate shear strength under the monotonic load. In total, 12 specimens were tested under five different repeated load types which were applied to observe the energy dissipating characteristics under various load intensities. It was found that the dissipated energy per cycle becomes stable and converges with the increasing number of cycles. A design formula to estimate the residual shear strength after the repeated loads was proposed, which is based on the residual shear strength factor and the nominal ultimate shear strength of the fresh Y-type perfobond rib shear connectors. The design residual shear strength was computed from the number of repeated loads and the energy dissipation amount per cycle. The reduction factor for the design residual shear strength was also proposed considering the target reliability level. The various reduction factors for the design residual shear strength were derived based on the probabilistic characteristics of the residual shear strength as well as the energy dissipation due to repeated loads.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junkun Tan ◽  
Jiaqi Guo ◽  
Shifan Qiao ◽  
Changrui Dong ◽  
Ziyong Cai ◽  
...  

The shear behaviour on the interface between soil and structure is a research hot point. Based on the RMT-150B rock mechanics test system, a series of high-stress direct tests were performed on the coarse sand under the condition of different moisture contents and concrete substrates with different rough and hardness. The results showed that the shear stress-displacement curve and volumetric strain-displacement curve of the interface under high stress could be fitted by a hyperbolic model; the ultimate shear strength and initial shear stiffness of the interface both increased with the normal stress while the shear stiffness decreased with the shear displacement. The crushing rate of the coarse sand particles on the interface increased with the normal stress. After the range analysis for the influencing factors of the interface’s shearing behaviour, it was shown that for the ultimate shear strength, their sequence of influencing degree was normal stress, the roughness of interface, moisture content, and hardness of concrete base; for the initial shear strength, the sequence was normal stress, moisture content, interface roughness, and basal hardness. As for dry sand, the possibility of relative particle crushing was higher than that of sand with a moisture content of 8%, and a peak of crushing occurred when the moisture content was 16%.


Sign in / Sign up

Export Citation Format

Share Document