scholarly journals On the Training Algorithms for Artificial Neural Network in Predicting the Shear Strength of Deep Beams

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Thuy-Anh Nguyen ◽  
Hai-Bang Ly ◽  
Hai-Van Thi Mai ◽  
Van Quan Tran

This study aims to predict the shear strength of reinforced concrete (RC) deep beams based on artificial neural network (ANN) using four training algorithms, namely, Levenberg–Marquardt (ANN-LM), quasi-Newton method (ANN-QN), conjugate gradient (ANN-CG), and gradient descent (ANN-GD). A database containing 106 results of RC deep beam shear strength tests is collected and used to investigate the performance of the four proposed algorithms. The ANN training phase uses 70% of data, randomly taken from the collected dataset, whereas the remaining 30% of data are used for the algorithms’ evaluation process. The ANN structure consists of an input layer with 9 neurons corresponding to 9 input parameters, a hidden layer of 10 neurons, and an output layer with 1 neuron representing the shear strength of RC deep beams. The performance evaluation of the models is performed using statistical criteria, including the correlation coefficient (R), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The results show that the ANN-CG model has the best prediction performance with R = 0.992, RMSE = 14.02, MAE = 14.24, and MAPE = 6.84. The results of this study show that the ANN-CG model can accurately predict the shear strength of RC deep beams, representing a promising and useful alternative design solution for structural engineers.

2020 ◽  
Vol 10 (15) ◽  
pp. 5160
Author(s):  
Saad Sh. Sammen ◽  
Mohammad Ali Ghorbani ◽  
Anurag Malik ◽  
Yazid Tikhamarine ◽  
Mohammad AmirRahmani ◽  
...  

A spillway is a structure used to regulate the discharge flowing from hydraulic structures such as a dam. It also helps to dissipate the excess energy of water through the still basins. Therefore, it has a significant effect on the safety of the dam. One of the most serious problems that may be happening below the spillway is bed scouring, which leads to soil erosion and spillway failure. This will happen due to the high flow velocity on the spillway. In this study, an alternative to the conventional methods was employed to predict scour depth (SD) downstream of the ski-jump spillway. A novel optimization algorithm, namely, Harris hawks optimization (HHO), was proposed to enhance the performance of an artificial neural network (ANN) to predict the SD. The performance of the new hybrid ANN-HHO model was compared with two hybrid models, namely, the particle swarm optimization with ANN (ANN-PSO) model and the genetic algorithm with ANN (ANN-GA) model to illustrate the efficiency of ANN-HHO. Additionally, the results of the three hybrid models were compared with the traditional ANN and the empirical Wu model (WM) through performance metrics, viz., mean absolute error (MAE), root mean square error (RMSE), coefficient of correlation (CC), Willmott index (WI), mean absolute percentage error (MAPE), and through graphical interpretation (line, scatter, and box plots, and Taylor diagram). Results of the analysis revealed that the ANN-HHO model (MAE = 0.1760 m, RMSE = 0.2538 m) outperformed ANN-PSO (MAE = 0.2094 m, RMSE = 0.2891 m), ANN-GA (MAE = 0.2178 m, RMSE = 0.2981 m), ANN (MAE = 0.2494 m, RMSE = 0.3152 m) and WM (MAE = 0.1868 m, RMSE = 0.2701 m) models in the testing period. Besides, graphical inspection displays better accuracy of the ANN-HHO model than ANN-PSO, ANN-GA, ANN, and WM models for prediction of SD around the ski-jump spillway.


Author(s):  
Siti Nasuha Zubir ◽  
S. Sarifah Radiah Shariff ◽  
Siti Meriam Zahari

<span lang="EN-US">Derailments of cargo have frequently occurred in Malaysian train services during the last decade. Many factors contribute to this incident, especially its total amount of carried weight. It is found that severe derailments cause damage to both lives and properties every year. If the amount of carried weight of cargo train could be accurately forecasted in advance, then its detrimental effect could be greatly minimized. This paper presents the application of Artificial Neural Network (ANN) to predict the amount of carried weight of cargo train, with KTMB used as the study case. As there are many types of cargo being carried by KTMB, this study focuses only on cement that being carried in twelve (12) different routes. In this study, Artificial Neural Network (ANN) has been incorporated for developing a predictive model with three (3) different training algorithms, Levenberg-Marquardt (LM), Quick Propagation (QP) and Conjugate Gradient Descent (CGD). The best training algorithm is selected to predict the amount of carried weight by comparing the error measures of all the training algorithm which are Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). The obtained results indicated that the ANN technique is suitable for predicting the amount of carried weight.</span>


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5188
Author(s):  
Mitsugu Hasegawa ◽  
Daiki Kurihara ◽  
Yasuhiro Egami ◽  
Hirotaka Sakaue ◽  
Aleksandar Jemcov

An artificial neural network (ANN) was constructed and trained for predicting pressure sensitivity using an experimental dataset consisting of luminophore content and paint thickness as chemical and physical inputs. A data augmentation technique was used to increase the number of data points based on the limited experimental observations. The prediction accuracy of the trained ANN was evaluated by using a metric, mean absolute percentage error. The ANN predicted pressure sensitivity to luminophore content and to paint thickness, within confidence intervals based on experimental errors. The present approach of applying ANN and the data augmentation has the potential to predict pressure-sensitive paint (PSP) characterizations that improve the performance of PSP for global surface pressure measurements.


2020 ◽  
Author(s):  
Rafael S. F. Ferraz ◽  
Renato S. F. Ferraz ◽  
Lucas F. S. Azeredo ◽  
Benemar A. de Souza

An accurate demand forecasting is essential for planning the electric dispatch in power system, contributing financially to electricity companies and helping in the security and continuity of electricity supply. In addition, it is evident that the distributed energy resource integration in the electric power system has been increasing recently, mostly from the photovoltaic generation, resulting in a gradual change of the load curve profile. Therefore, the 24 hours ahead prediction of the electrical demand of Campina Grande, Brazil, was realized from artificial neural network with a focus on the data preprocessing. Thus, the time series variations, such as hourly, diary and seasonal, were reduced in order to obtain a better demand prediction. Finally, it was compared the results between the forecasting with the preprocessing application and the prediction without the  preprocessing stage. Based on the results, the first methodology presented lower mean absolute percentage error with 7.95% against 10.33% of the second one.


2019 ◽  
Vol 31 (3) ◽  
pp. 163-168 ◽  
Author(s):  
Oliver Krammer ◽  
Péter Martinek ◽  
Balazs Illes ◽  
László Jakab

Purpose This paper aims to investigate the self-alignment of 0603 size (1.5 × 0.75 mm) chip resistors, which were soldered by infrared or vapour phase soldering. The results were used for establishing an artificial neural network for predicting the component movement during the soldering. Design/methodology/approach The components were soldered onto an FR4 testboard, which was designed to facilitate the measuring of the position of the components both prior to and after the soldering. A semi-automatic placement machine misplaced the components intentionally, and the self-alignment ability was determined for soldering techniques of both infrared and vapour phase soldering. An artificial neural network-based prediction method was established, which is able to predict the position of chip resistors after soldering as a function of component misplacement prior to soldering. Findings The results showed that the component can self-align from farer distances by using vapour phase method, even from relative misplacement of 50 per cent parallel to the shorter side of the component. Components can self-align from a relative misplacement only of 30 per cent by using infrared soldering method. The established artificial neural network can predict the component self-alignment with an approximately 10-20 per cent mean absolute error. Originality/value It was proven that the vapour phase soldering method is more stable from the component’s self-alignment point of view. Furthermore, machine learning-based predictors can be applied in the field of reflow soldering technology, and artificial neural networks can predict the component self-alignment with an appropriately low error.


Author(s):  
Jatinder Kumar ◽  
Ajay Bansal

The experimental determination of various properties of diesel-biodiesel mixtures is very time consuming as well as tedious process. Any tool helpful in estimation of these properties without experimentation can be of immense utility. In present work, other tools of determination of properties of diesel-biodiesel blends were tried. A traditional statistical technique of linear regression (principle of least squares) was used to estimate the flash point, fire point, density and viscosity of diesel and biodiesel mixtures. A set of seven neural network architectures, three training algorithms along with ten different sets of weight and biases were examined to choose best Artificial Neural Network (ANN) to predict the above-mentioned properties of dieselbiodiesel mixtures. The performance of both of the traditional linear regression and ANN techniques were then compared to check their validity to predict the properties of various mixtures of diesel and biodiesel. Key words: Biodiesel; Artificial Neural Network; Principle of least squares; Diesel; Linear Regression. DOI: 10.3126/kuset.v6i2.4017Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.98-103


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2058 ◽  
Author(s):  
Salaheldin Elkatatny ◽  
Ahmed Al-AbdulJabbar ◽  
Khaled Abdelgawad

The drilling rate of penetration (ROP) is defined as the speed of drilling through rock under the bit. ROP is affected by different interconnected factors, which makes it very difficult to infer the mutual effect of each individual parameter. A robust ROP is required to understand the complexity of the drilling process. Therefore, an artificial neural network (ANN) is used to predict ROP and capture the effect of the changes in the drilling parameters. Field data (4525 points) from three vertical onshore wells drilled in the same formation using the same conventional bottom hole assembly were used to train, test, and validate the ANN model. Data from Well A (1528 points) were utilized to train and test the model with a 70/30 data ratio. Data from Well B and Well C were used to test the model. An empirical equation was derived based on the weights and biases of the optimized ANN model and compared with four ROP models using the data set of Well C. The developed ANN model accurately predicted the ROP with a correlation coefficient (R) of 0.94 and an average absolute percentage error (AAPE) of 8.6%. The developed ANN model outperformed four existing models with the lowest AAPE and highest R value.


Sign in / Sign up

Export Citation Format

Share Document