Mehar Methods to Solve Intuitionistic Fuzzy Linear Programming Problems with Trapezoidal Intuitionistic Fuzzy Numbers

Author(s):  
Sukhpreet Kaur Sidhu ◽  
Amit Kumar
2020 ◽  
Vol 39 (5) ◽  
pp. 6271-6278
Author(s):  
Gultekin Atalik ◽  
Sevil Senturk

Since proposed by Zadeh in 1965, ordinary fuzzy sets help us to model uncertainty and developed many types such as type 2 fuzzy, intuitionistic fuzzy, hesitant fuzzy etc. Intuitionistic fuzzy sets include both membership and non-membership functions for their each element. Ranking of a number is to identify a relationship of scalar quantity between these numbers. Ranking of fuzzy numbers play an important role in modeling problems such as fuzzy decision making, fuzzy linear programming problems. In this study, a new ranking method for triangular intuitionistic fuzzy numbers is proposed. The method based on the incircle of the membership function and non-membership function of TIFN uses lexicographical order to rank intuitionistic fuzzy numbers. Two examples are provided to illustrate the applicability of the method. Also, a comparative study is performed to demonstrate the validity of the proposed method. The results indicate that proposed method is consistent with other methods in the literature. Also, the method overcomes the problems such as numbers being very small or close to each other.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
C. Veeramani ◽  
M. Joseph Robinson ◽  
S. Vasanthi

The cost of goods per unit transported from the source to the destination is considered to be fixed regardless of the number of units transported. But, in reality, the cost is often not fixed. Quantity discount is often allowed for large shipments. Furthermore, the transportation cost and the price break quantities are not deterministic. In this study, we introduce the concept of Value- and Ambiguity-based approach for solving the intuitionistic fuzzy transportation problem with total quantity discounts and incremental quantity discounts. Here, the cost and quantity price breakpoints are represented by trapezoidal intuitionistic fuzzy numbers. The Values and Ambiguities are defined as the degree of acceptance and rejection for trapezoidal intuitionistic fuzzy numbers. The trapezoidal intuitionistic fuzzy transportation problem is converted to a parametric transportation problem based on their Value indices and Ambiguity indices. Then, for different Values of the parameter, the transformed problem is reduced to the linear programming problem. Then, the linear programming problem is solved by using the classical methods. The proposed method is demonstrated with a numerical example. In conclusion, the intuitionistic fuzzy transportation problem with total quantity discounts is compared with the intuitionistic fuzzy transportation problem with incremental quantity discounts.


2021 ◽  
pp. 1-14
Author(s):  
Manisha Malik ◽  
S. K. Gupta ◽  
I. Ahmad

In many real-world problems, one may encounter uncertainty in the input data. The fuzzy set theory fits well to handle such situations. However, it is not always possible to determine with full satisfaction the membership and non-membership degrees associated with an element of the fuzzy set. The intuitionistic fuzzy sets play a key role in dealing with the hesitation factor along-with the uncertainity involved in the problem and hence, provides more flexibility in the decision-making process. In this article, we introduce a new ordering on the set of intuitionistic fuzzy numbers and propose a simple approach for solving the fully intuitionistic fuzzy linear programming problems with mixed constraints and unrestricted variables where the parameters and decision variables of the problem are represented by intuitionistic fuzzy numbers. The proposed method converts the problem into a crisp non-linear programming problem and further finds the intuitionistic fuzzy optimal solution to the problem. Some of the key significance of the proposed study are also pointed out along-with the limitations of the existing studies. The approach is illustrated step-by-step with the help of a numerical example and further, a production planning problem is also demonstrated to show the applicability of the study in practical situations. Finally, the efficiency of the proposed algorithm is analyzed with the existing studies based on various computational parameters.


2017 ◽  
Vol 27 (3) ◽  
pp. 563-573 ◽  
Author(s):  
Rajendran Vidhya ◽  
Rajkumar Irene Hepzibah

AbstractIn a real world situation, whenever ambiguity exists in the modeling of intuitionistic fuzzy numbers (IFNs), interval valued intuitionistic fuzzy numbers (IVIFNs) are often used in order to represent a range of IFNs unstable from the most pessimistic evaluation to the most optimistic one. IVIFNs are a construction which helps us to avoid such a prohibitive complexity. This paper is focused on two types of arithmetic operations on interval valued intuitionistic fuzzy numbers (IVIFNs) to solve the interval valued intuitionistic fuzzy multi-objective linear programming problem with pentagonal intuitionistic fuzzy numbers (PIFNs) by assuming differentαandβcut values in a comparative manner. The objective functions involved in the problem are ranked by the ratio ranking method and the problem is solved by the preemptive optimization method. An illustrative example with MATLAB outputs is presented in order to clarify the potential approach.


2021 ◽  
Vol 10 (12) ◽  
pp. 3699-3723
Author(s):  
L. Kané ◽  
M. Konaté ◽  
L. Diabaté ◽  
M. Diakité ◽  
H. Bado

The present paper aims to propose an alternative solution approach in obtaining the fuzzy optimal solution to a fuzzy linear programming problem with variables given as fuzzy numbers with minimum uncertainty. In this paper, the fuzzy linear programming problems with variables given as fuzzy numbers is transformed into equivalent interval linear programming problems with variables given as interval numbers. The solutions to these interval linear programming problems with variables given as interval numbers are then obtained with the help of linear programming technique. A set of six random numerical examples has been solved using the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document