Machine Learning Algorithm-Based Minimisation of Network Traffic in Mobile Cloud Computing

Author(s):  
Praveena Akki ◽  
V. Vijayarajan
2019 ◽  
Vol 15 (4) ◽  
pp. 2349-2359 ◽  
Author(s):  
Tie Qiu ◽  
Heyuan Wang ◽  
Keqiu Li ◽  
Huansheng Ning ◽  
Arun Kumar Sangaiah ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fanghai Gong

In recent years, cloud workflow task scheduling has always been an important research topic in the business world. Cloud workflow task scheduling means that the workflow tasks submitted by users are allocated to appropriate computing resources for execution, and the corresponding fees are paid in real time according to the usage of resources. For most ordinary users, they are mainly concerned with the two service quality indicators of workflow task completion time and execution cost. Therefore, how cloud service providers design a scheduling algorithm to optimize task completion time and cost is a very important issue. This paper proposes research on workflow scheduling based on mobile cloud computing machine learning, and this paper conducts research by using literature research methods, experimental analysis methods, and other methods. This article has deeply studied mobile cloud computing, machine learning, task scheduling, and other related theories, and a workflow task scheduling system model was established based on mobile cloud computing machine learning from different algorithms used in processing task completion time, task service costs, task scheduling, and resource usage The situation and the influence of different tasks on the experimental results are analyzed in many aspects. The algorithm in this paper speeds up the scheduling time by about 7% under a different number of tasks and reduces the scheduling cost by about 2% compared with other algorithms. The algorithm in this paper has been obviously optimized in time scheduling and task scheduling.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jiaxuan Fei ◽  
Qigui Yao ◽  
Mingliang Chen ◽  
Xiangqun Wang ◽  
Jie Fan

The construction of power Internet of things is an important development direction for power grid enterprises. Although power Internet of things is a kind of network, it is denser than the ordinary Internet of things points and more complex equipment types, so it has higher requirements for network security protection. At the same time, due to the special information perception and transmission mode in the Internet of things, the information transmitted in the network is easy to be stolen and resold, and traditional security measures can no longer meet the security protection requirements of the new Internet of things devices. To solve the privacy leakage and security attack caused by the illegal intrusion in the network, this paper proposes to construct a device portrait for terminal devices in the power Internet of things and detect abnormal traffic in the network based on device portrait. By collecting traffic data in the network environment, various network traffic characteristics are extracted, and abnormal traffic is analyzed and identified by the machine learning algorithm. By collecting the traffic data in the network environment, the features are extracted from the physical layer, network layer, and application layer of the message, and the device portrait is generated by a machine learning algorithm. According to the established attack mode, the corresponding traffic characteristics are analyzed, and the detection of abnormal traffic is achieved by comparing the attack traffic characteristics with the device portrait. The experimental results show that the accuracy of this method is more than 90%.


Sign in / Sign up

Export Citation Format

Share Document