Joule Heating and Thermophoresis Effects on Unsteady Natural Convection Flow of Doubly Stratified Fluid in a Porous Medium with Variable Fluxes: A Darcy–Brinkman Model

Author(s):  
Ch. Madhava Reddy ◽  
Ch. RamReddy ◽  
D. Srinivasacharya
2009 ◽  
Vol 36 (4) ◽  
pp. 261-274 ◽  
Author(s):  
Rudra Deka ◽  
Bhaben Neog

An exact solution to one-dimensional unsteady natural convection flow past an infinite vertical accelerated plate, immersed in a viscous thermally stratified fluid is investigated. Pressure work term and the vertical temperature advection are considered in the thermodynamic energy equation. The dimensionless governing equations are solved by Laplace Transform techniques for the Prandtl number unity. The velocity and temperature profiles as well as the skin-friction and the rate of heat transfer are presented graphically and discussed the effects of the Grashof number Gr, stratification parameter S at various times t.


2020 ◽  
Vol 9 (1) ◽  
pp. 223-232 ◽  
Author(s):  
B.J. Gireesha ◽  
S. Sindhu

AbstractThis study has been conducted to focus on natural convection flow of Casson fluid through an annular microchannel formed by two cylinders in the presence of magnetic field. The process of heat generation/absorption is taken into consideration. Combined effects of various parameters such as porous medium, velocity slip and temperature jump are considered. Solution of the present mathematical model is obtained numerically using fourth-fifth order Runge-Kutta-Fehlberg method. The flow velocity, thermal field, skin friction and Nusselt number are scrutinized with respect to the involved parameters of interest such as fluid wall interaction parameter, rarefaction parameter, Casson parameter and Darcy number with the aid of graphs. It is established that higher values of Casson parameter increases the skin friction coefficient. Further it is obtained that rate of heat transfer diminishes as fluid wall interaction parameter increases.


Sign in / Sign up

Export Citation Format

Share Document