scholarly journals Unsteady natural convection flow past an accelerated vertical plate in a thermally stratified fluid

2009 ◽  
Vol 36 (4) ◽  
pp. 261-274 ◽  
Author(s):  
Rudra Deka ◽  
Bhaben Neog

An exact solution to one-dimensional unsteady natural convection flow past an infinite vertical accelerated plate, immersed in a viscous thermally stratified fluid is investigated. Pressure work term and the vertical temperature advection are considered in the thermodynamic energy equation. The dimensionless governing equations are solved by Laplace Transform techniques for the Prandtl number unity. The velocity and temperature profiles as well as the skin-friction and the rate of heat transfer are presented graphically and discussed the effects of the Grashof number Gr, stratification parameter S at various times t.

2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Sadia Siddiqa ◽  
Naheed Begum ◽  
M. A. Hossain ◽  
Rama Subba Reddy Gorla

This paper reports the numerical results for the natural convection flow of a two-phase dusty nanofluid along a vertical wavy frustum of a cone. The general governing equations are transformed into parabolic partial differential equations, which are then solved numerically with the help of implicit finite difference method. Comprehensive flow formations of carrier and dusty phases are given with the aim to predict the behavior of heat and mass transport across the heated wavy frustum of a cone. The effectiveness of utilizing the nanofluids to control skin friction and heat and mass transport is analyzed. The results clearly show that the shape of the waviness changes when nanofluid is considered. It is shown that the modified diffusivity ratio parameter, NA, extensively promotes rate of mass transfer near the vicinity of the cone, whereas heat transfer rate reduces.


Sign in / Sign up

Export Citation Format

Share Document