Lijiang Jade Dragon (Yulong) Snow Mountain and Glacier National Geopark, Yunnan

2019 ◽  
pp. 347-347
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wang Shijin ◽  
Che Yanjun ◽  
Wei Yanqiang

AbstractChina’s temperate glaciers have a relatively warm and humid climate and hydrothermal conditions at low latitudes. Temperate glaciers, however, have larger ablation, higher ice temperatures, relatively fast movement speeds, and a significant sliding process at the bottom. As a result, these glaciers are more significantly affected by climate change. On the basis of topographic maps, aerial photography, and Landsat OLI images, and combined with existing research results, this paper systematically analyzed the temporal and spatial dynamic characteristics of typical temperate glaciers. The results are as follows: (1) From the 1950s to the 1970s, compared with other types of glaciers, temperate glaciers showed strong retreat and ablation trends in terms of area, length, speed, and mass balance. (2) The reduction rates of glacier areas of Kangri Garpo, Dagu Snow Mountain, Yulong Snow Mountain (YSM), and Meili Snow Mountain (MSM) in China’s temperate glacier areas all exceeded 38%, which was far above the national average of 18% from the 1950s to the 2010s. (3) The recent length retreat rates of Azha Glacier, Kangri Garpo, and Mingyong Glacier, MSM, Hailuogou Glacier (HG), Gongga Snow Mountain (GSM), and Baishui River Glacier No. 1 (BRGN1), YSM were above 22 m/a, which was faster than the retreat rates of other regions. (4) Consistent with glacier retreat, temperate glaciers also had a faster ice flow speed. The ice flow velocities of the BGN1, HG, Parlung River Glaciers No. 4 and 94, and Nyainqêntanglha were, respectively, 6.33–30.78 m/a, 41–205 m/a, 15.1–86.3 m/a, and 7.5–18.4 m/a, which was much faster than the velocity of other types of glaciers. (5) Mass loss of temperate glaciers was most dramatic during the observation period (1959–2015). The annual mass balance from eight typical temperate glaciers fluctuated between − 2.48 and 0.44 m w.e., and the annual average change rate of mass balance (− 0.037 m w.e./a) was much higher than that in China (− 0.015 m w.e./a, p < 0.0001) and globally (− 0.013 m w.e./a, p < 0.0001).


2010 ◽  
Vol 21 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Zongxing Li ◽  
Yuanqing He ◽  
Wilfred H. Theakstone ◽  
Wenxiong Jia ◽  
Huijuan Xin ◽  
...  

2017 ◽  
Vol 37 (11) ◽  
Author(s):  
张卫国 ZHANG Weiguo ◽  
肖德荣 XIAO Derong ◽  
田昆 TIAN Kun ◽  
陈广磊 CHEN Guanglei ◽  
和荣华 HE Ronghua ◽  
...  

2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Shijin Wang ◽  
Yanjun Che ◽  
Hongxi Pang ◽  
Jiankuo Du ◽  
Zhonglin Zhang

2020 ◽  
Vol 12 (20) ◽  
pp. 3280 ◽  
Author(s):  
Yanjun Che ◽  
Shijin Wang ◽  
Shuhua Yi ◽  
Yanqiang Wei ◽  
Yancong Cai

Glacier retreat is a common phenomenon in the Qinghai-Tibetan Plateau (QTP) with global warming during the past several decades, except for several mountains, such as the glaciers in the Karakoram and the western Kunlun Mountains. The dynamic nature of glaciers significantly influences the hydrologic, geologic, and ecological systems in the mountain regions. The sensitivity and dynamic response to climate change make glaciers excellent indicators of regional and global climate change, such as glacier melting and retreat with the rise of local air temperature. Long-term monitoring of glacier change is important to understand and assess past, current, and possible future climate environments. Some glacier surfaces are safe and accessible by foot, and are monitored using mass balance stakes and snow pits. Meanwhile, some glaciers with inaccessible termini may be surveyed using satellite remote images and Unmanned Aerial Vehicles (UAVs). Those inaccessible glaciers are generally covered by debris in the southeast QTP, which is hardly accessible due to the wide distribution of crevasses and cliffs. In this paper, we used the UAV to monitor the dynamic features of mass balance and velocity of the debris-covered region of Baishui River Glacier No. 1 (BRG1) on the Yulong Snow Mountain (YSM), Southeast QTP. We obtained the Orthomosaic and DEM with a high resolution of 0.10 m on 20 May and 22 September 2018, respectively. The comparison showed that the elevation of the debris-covered region of the BRG1 decreased by 6.58 m ± 3.70 m on average, and the mean mass balance was −5.92 m w.e. ± 3.33 m w.e. during the summer, correspondingly. The mean displacement of debris-covered glacier surface was 18.30 m ± 6.27 m, that is, the mean daily velocity was 0.14 m/d ± 0.05 m/d during the summer. In addition, the UAV images not only revealed the different patterns of glacier melting and displacement but also captured the phenomena of mass loss due to ice avalanches at the glacier front and the development of large crevasses. This study provides a feasible method for understanding the dynamic features of global debris-covered glaciers which are inaccessible and unobservable by other means.


2010 ◽  
Vol 21 (2) ◽  
pp. 148-156 ◽  
Author(s):  
Xianzhong He ◽  
Jiankuo Du ◽  
Yapeng Ji ◽  
Ningning Zhang ◽  
Zongxing Li ◽  
...  
Keyword(s):  

2013 ◽  
Vol 70 (6) ◽  
pp. 2807-2816 ◽  
Author(s):  
Guofeng Zhu ◽  
Tao Pu ◽  
Yuanqing He ◽  
Peiji Shi ◽  
Tao Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document