Two-Step Anomaly Detection Approach Using Clustering Algorithm

Author(s):  
Praphula Kumar Jain ◽  
Rajendra Pamula
2010 ◽  
Vol 30 (7) ◽  
pp. 1916-1918 ◽  
Author(s):  
Jian-guo LI ◽  
Xue-gang HU

2021 ◽  
Vol 13 (4) ◽  
pp. 721
Author(s):  
Zhongheng Li ◽  
Fang He ◽  
Haojie Hu ◽  
Fei Wang ◽  
Weizhong Yu

Collaborative representation-based detector (CRD), as the most representative anomaly detection method, has been widely applied in the field of hyperspectral anomaly detection (HAD). However, the sliding dual window of the original CRD introduces high computational complexity. Moreover, most HAD models only consider a single spectral or spatial feature of the hyperspectral image (HSI), which is unhelpful for improving detection accuracy. To solve these problems, in terms of speed and accuracy, we propose a novel anomaly detection approach, named Random Collective Representation-based Detector with Multiple Feature (RCRDMF). This method includes the following steps. This method first extract the different features include spectral feature, Gabor feature, extended multiattribute profile (EMAP) feature, and extended morphological profile (EMP) feature matrix from the HSI image, which enables us to improve the accuracy of HAD by combining the multiple spectral and spatial features. The ensemble and random collaborative representation detector (ERCRD) method is then applied, which can improve the anomaly detection speed. Finally, an adaptive weight approach is proposed to calculate the weight for each feature. Experimental results on six hyperspectral datasets demonstrate that the proposed approach has the superiority over accuracy and speed.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012062
Author(s):  
Weihong Wang ◽  
Zhuolin Wu ◽  
Xuan Liu ◽  
Lei Jia ◽  
Xiaoguang Wang

Abstract For modern operation and maintenance systems, they are usually required to monitor multiple types and large quantities of machine’s key performance indicators (KPIs) at the same time with limited resources. In this paper, to tackle these problems, we propose a highly compatible time series anomaly detection model based on K-means clustering algorithm with a new Wavelet Feature Distance (WFD). Our work is inspired by some ideas from image processing and signal processing domain. Our model detects abnormalities in the time series datasets which are first clustered by K-means to boost the accuracy. Our experiments show significant accuracy improvements compared with traditional algorithms, and excellent compatibilities and operating efficiencies compared with algorithms based on deep learning.


Sign in / Sign up

Export Citation Format

Share Document