scholarly journals ReRe: A Lightweight Real-Time Ready-to-Go Anomaly Detection Approach for Time Series

Author(s):  
Ming-Chang Lee ◽  
Jia-Chun Lin ◽  
Ernst Gunner Gan
Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1251 ◽  
Author(s):  
Tsatsral Amarbayasgalan ◽  
Van Huy Pham ◽  
Nipon Theera-Umpon ◽  
Keun Ho Ryu

Automatic anomaly detection for time-series is critical in a variety of real-world domains such as fraud detection, fault diagnosis, and patient monitoring. Current anomaly detection methods detect the remarkably low proportion of the actual abnormalities correctly. Furthermore, most of the datasets do not provide data labels, and require unsupervised approaches. By focusing on these problems, we propose a novel deep learning-based unsupervised anomaly detection approach (RE-ADTS) for time-series data, which can be applicable to batch and real-time anomaly detections. RE-ADTS consists of two modules including the time-series reconstructor and anomaly detector. The time-series reconstructor module uses the autoregressive (AR) model to find an optimal window width and prepares the subsequences for further analysis according to the width. Then, it uses a deep autoencoder (AE) model to learn the data distribution, which is then used to reconstruct a time-series close to the normal. For anomalies, their reconstruction error (RE) was higher than that of the normal data. As a result of this module, RE and compressed representation of the subsequences were estimated. Later, the anomaly detector module defines the corresponding time-series as normal or an anomaly using a RE based anomaly threshold. For batch anomaly detection, the combination of the density-based clustering technique and anomaly threshold is employed. In the case of real-time anomaly detection, only the anomaly threshold is used without the clustering process. We conducted two types of experiments on a total of 52 publicly available time-series benchmark datasets for the batch and real-time anomaly detections. Experimental results show that the proposed RE-ADTS outperformed the state-of-the-art publicly available anomaly detection methods in most cases.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3367 ◽  
Author(s):  
Nan Ding ◽  
Huanbo Gao ◽  
Hongyu Bu ◽  
Haoxuan Ma ◽  
Huaiwei Si

Anomaly detection is an important research direction, which takes the real-time information system from different sensors and conditional information sources into consideration. Based on this, we can detect possible anomalies expected of the devices and components. One of the challenges is anomaly detection in multivariate-sensing time-series in this paper. Based on this situation, we propose RADM, a real-time anomaly detection algorithm based on Hierarchical Temporal Memory (HTM) and Bayesian Network (BN). First of all, we use HTM model to evaluate the real-time anomalies of each univariate-sensing time-series. Secondly, a model of anomalous state detection in multivariate-sensing time-series based on Naive Bayesian is designed to analyze the validity of the above time-series. Lastly, considering the real-time monitoring cases of the system states of terminal nodes in Cloud Platform, the effectiveness of the methodology is demonstrated using a simulated example. Extensive simulation results show that using RADM in multivariate-sensing time-series is able to detect more abnormal, and thus can remarkably improve the performance of real-time anomaly detection.


2020 ◽  
Vol 146 (4) ◽  
pp. 04020015 ◽  
Author(s):  
Jinjing Gu ◽  
Zhibin Jiang ◽  
Wei “David” Fan ◽  
Jiameng Wu ◽  
Jingjing Chen

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xuguang Liu

Aiming at the anomaly detection problem in sensor data, traditional algorithms usually only focus on the continuity of single-source data and ignore the spatiotemporal correlation between multisource data, which reduces detection accuracy to a certain extent. Besides, due to the rapid growth of sensor data, centralized cloud computing platforms cannot meet the real-time detection needs of large-scale abnormal data. In order to solve this problem, a real-time detection method for abnormal data of IoT sensors based on edge computing is proposed. Firstly, sensor data is represented as time series; K-nearest neighbor (KNN) algorithm is further used to detect outliers and isolated groups of the data stream in time series. Secondly, an improved DBSCAN (Density Based Spatial Clustering of Applications with Noise) algorithm is proposed by considering spatiotemporal correlation between multisource data. It can be set according to sample characteristics in the window and overcomes the slow convergence problem using global parameters and large samples, then makes full use of data correlation to complete anomaly detection. Moreover, this paper proposes a distributed anomaly detection model for sensor data based on edge computing. It performs data processing on computing resources close to the data source as much as possible, which improves the overall efficiency of data processing. Finally, simulation results show that the proposed method has higher computational efficiency and detection accuracy than traditional methods and has certain feasibility.


Sign in / Sign up

Export Citation Format

Share Document