Methanol as an Alternative Fuel for Diesel Engines

Author(s):  
Hardikk Valera ◽  
Avinash Kumar Agarwal
Author(s):  
M P Ashok ◽  
C G Saravanan

Diesel engines are employed as the major propulsion power sources because of their simple, robust structure and high fuel economy. It is expected that diesel engines will be widely used in the foreseeable future. However, an increase in the use of diesel engines causes a shortage of fossil fuel and results in a greater degree of pollution. To regulate the above, identifying an alternative fuel to the diesel engine with less pollution is essential. Ethanol–diesel emulsion is one such method, used for the preparation of an alternative fuel for the diesel engine. Experimental investigations were carried out to compare the performance of diesel fuel with different ratios 50D: 50E (50 per cent diesel No: 2: 50 per cent ethanol –100 per cent proof) and 60D: 40E emulsified fuels. In the next phase, experiments were conducted for the selected emulsified fuel ratio 50D: 50E for different high injection pressures and the results are compared. The results show that for the emulsified fuel ratios, there is a marginal increase in torque, power, NO x, emissions, and decreasing values of carbon monoxide (CO), sulphur dioxide (SO2) emissions at the maximum speed conditions, compared with diesel fuel. Also, it is found that an increase in injection pressure of the engine running with emulsified fuel decreases CO and smoke emissions especially between 1500 to 2000 r/min with respect to the diesel fuel.


2010 ◽  
Vol 44-47 ◽  
pp. 4167-4175
Author(s):  
Anita Kovač Kralj ◽  
Davorin Kralj

Bio-diesel is a clean burning alternative fuel, produced from domestic, renewable resources. Bio-diesel can be blended at any level with petroleum diesel to create a bio-diesel blend. It can be used in compression-ignition (diesel) engines with little or no modification. Bio-diesel is simple to use, biodegradable, non-toxic, and essentially free of sulphur and aromatics. This paper presents the two following identifiable topic areas as key themes: 1. preparation of an aqueous solution of sodium hydroxide – as a catalyst, which can be activated by the most MeO- active groups, and can therefore be converted to methyl esters (biodiesel) from triglyceride. Methoxide (MeO-) was produced from sodium hydroxide (NaOH) and methanol (MeOH) in a batch reactor: NaOH + MeOH = H2O + Na+ + MeO-. During bio-diesel production, methoxide is incorrectly referred to as the product of mixing methanol and sodium hydroxide. An aqueous solution of sodium hydroxide – was prepared as a catalyst, by using different amounts of water at the same temperature. The reaction with lower water took place at the highest and quickest degrees of NaOH conversion and thus more MeO- active groups. The water was effective as an inhibitor.


2011 ◽  
Vol 01 (02) ◽  
pp. 77-83 ◽  
Author(s):  
Zannatul Moiet Hasib ◽  
Jomir Hossain ◽  
Saikat Biswas ◽  
Asif Islam

Sign in / Sign up

Export Citation Format

Share Document