A General Solution of Mode I Stress Intensity Factor for Double Cantilever Beam Specimens with Consideration of Defomable Uncracked Segment

Author(s):  
Xiangyang An ◽  
Zheng Jordan Zhang ◽  
Fei Su
Holzforschung ◽  
2007 ◽  
Vol 61 (2) ◽  
pp. 182-189 ◽  
Author(s):  
Hiroshi Yoshihara

Abstract Simple equations are proposed for calculation of critical stress intensity factors by tests using double cantilever beam (DCB) and three-point end-notched flexure (3ENF). The calculation modes are named here as modes I and II and are based on the beam theory and 95 previously published data on the elasticity properties of woods. The validity of the data was examined on specimens of western hemlock wood with various crack lengths. The influence of the elastic properties is more significant on the stress intensity factor calculated in mode I than that calculated in mode II. Further work is needed, particularly for measuring the mode I stress intensity factor. However, it is obvious from the experiments with western hemlock that the critical stress intensity factors can be determined by the equations proposed here.


2013 ◽  
Vol 05 (04) ◽  
pp. 1350044
Author(s):  
XIANHONG MENG ◽  
ZHAOYU BAI ◽  
MING LI

In this paper, the three-dimensional dynamic problem for an infinite elastic medium weakened by a crack of infinite length and finite width is analyzed, while the crack surfaces are subjected to mode I transient linear tractions. The integral transform approach is applied to reduce the governing differential equations to a pair of coupled singular integral equations, whose solutions can be obtained with the typical iteration method. The analytical solution of the stress intensity factor when the first wave and the first scattered wave reach the investigated crack tip is obtained. Numerical results are presented for different values of the width-to-longitudinal distance ratio z/l. It is found that the stress intensity factor decreases with the arrival of the first scattered longitudinal wave and increases with the arrival of the first scattered Rayleigh wave and tends to be stable. The static value considering both the first scattered wave and the first wave is about 50% greater than that considering only the first wave, and then the effect of the reflected wave is remarkable and deserves further study.


Sign in / Sign up

Export Citation Format

Share Document