dynamic stress intensity factor
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 11)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Chengxiao Li ◽  
Dongming Guo ◽  
Yuantong Zhang ◽  
Chen An

AbstractAn underground roadway usually contains defects of various types, and when the roadway is subjected to external loading, the locations of those defects influence the roadway by differing degrees. In this study, to study how the locations of defects affect crack propagation in a roadway, specimens with tunnel-type voids were made using polymethyl methacrylate, and the stress wave produced by a bullet impacting an incident rod was used as the impact load. Meanwhile, the variations in crack speed, displacement, and dynamic stress intensity factor during crack propagation were obtained using an experimental system of digital laser dynamic caustics, and the commercial software ABAQUS was used for numerical simulations. From the experiments and numerical simulations, the crack propagation path was verified and the impact fracture behavior of a semicircular-arch roadway with different defect positions was presented. The results show that when the pre-fabricated crack is on the central axis of the sample, the crack propagation is purely mode I; when the pre-fabricated crack is 5 mm from the central axis, the crack propagation alternates between mode I and a mixture of modes I and II; when the pre-fabricated crack is at the edge of the semicircular-arch roadway, the crack propagation follows the I–II mixed mode.


2020 ◽  
Vol 30 (3) ◽  
pp. 375-381
Author(s):  
Tsunehisa Handa ◽  
Tetsuya Tagawa ◽  
Yusuke Shimada ◽  
Tomoya Kawabata ◽  
Takehiro Inoue ◽  
...  

Author(s):  
Ni An ◽  
Tian-shu Song ◽  
Ming Zhao ◽  
Yu Liu ◽  
Gangling Hou

Abstract Piezoelectric materials have been widely used in modern science and technology due to their electro-mechanical coupling response. Sometimes, because of the stiff and brittle nature of some piezoelectric materials, the piezoelectric devices with defects may face fracture or failure during their service procedures. Therefore, it has become important to investigate the failure behaviors caused by defects, such as cracks and holes. Based on the study of the dynamic anti-plane characteristics for radial crack emanating from a circular cavity in piezoelectric bi-materials, this paper aims to analyzes the dynamic incident anti-plane shearing (SH-wave) in piezoelectric bi-materials, which contains two interfacial cracks, near an eccentric elliptical hole. Green’s function method, the conformal mapping method, the interface conjunction techniques and the crack-deviation techniques are utilized to obtain a series of first kind Fredholm’s equations, based on which the dynamic stress intensity factor (DSIF) at the outer and the inner cracks’ tips are theoretically expressed. Numerical examples were graphically presented to illustrate the effects of the piezoelectric parameter, the effective piezoelectric elastic modulus, the dimensionless incident wave number and geometric parameters on the DSIF at both of the tips. Previous studies are not comprehensive, especially when the center of the hole deviates from the interface. Therefore, the impact of eccentric distance on DSIF is considered in this paper. The solution of this problem provides a more accurate and efficient method for the investigation of dynamic fracture properties of piezoelectric materials and has an important theoretical significance in engineering design.


10.29007/b8nm ◽  
2020 ◽  
Author(s):  
Kim Bang Tran ◽  
Tich Thien Truong

The mixing of hard inclusions into materials is one way to strengthen and increase the durability of the materials, creating granular composite materials. However, apart from the hard inclusions in material, other impurities (soft inclusions) and holes still have the ability to appear and affect the durability of the material. The existence of holes, impurities will affect the behavior of the crack. In this paper, the authors will investigate the effects of holes, hard inclusions, soft inclusions on the behavior of crack when growing under the effect of dynamic loads by extended twice-interpolation finite element method-XTFEM. The results of the dynamic stress intensity factor obtained from numerical examples will clearly show the impact of different types of particles on cracks... The results obtained by XTFEM will be compared with the results published in a prestigious international scientific journal to verify reliability.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 669
Author(s):  
Yinhuan Jiang ◽  
Chuanping Zhou ◽  
Ban Wang ◽  
Liqun Wu

A theoretical method is developed to study the magnetoelastic coupled wave and dynamic stress intensity around a cylindrical aperture in exponential graded piezomagnetic materials. By employing the decoupling technique, the coupled magnetoelastic governing equations are decomposed. Then the analytic solutions of elastic wave fields and magnetic fields are presented by using the wave function expansion method. By satisfying the boundary conditions of the aperture, the mode coefficients, and the analytic solutions of dynamic stress intensity factors are determined. The numerical examples of the dynamic stress intensity factor near the aperture are presented. The numerical results indicate that the incident wave number, the piezomagnetic properties, and the nonhomogeneous parameter of materials highly influence the dynamic stress around the aperture.


2020 ◽  
Vol 313 ◽  
pp. 00041
Author(s):  
Matúš Turis ◽  
Milan Držík ◽  
Oľga Ivánková

The aim of this contribution is a theoretical study for the estimation of the dynamic stress intensity factor (DSIF) using results from an experimental measurement. Using optical methods, it is possible to determine individual displacements of crack surfaces in multiple distances from the crack tip. Based on the theoretical distribution of displacements in the crack front, the DSIF can be estimated using the displacement extrapolation method at each time step. The main motivation for this methodology is the difficulty of estimation DSIF in real structures. The described approach is consequently compared with conventional numerical methods and the applicability is evaluated.


2019 ◽  
Vol 11 (10) ◽  
pp. 1950094
Author(s):  
Guangping Zou ◽  
He Chen ◽  
Zhongliang Chang

Mode mixity plays an essential role in the criteria of mixed mode fracture. In this paper, a novel approach for precisely controlling mode mixity under dynamic loading is proposed. Numerical simulation of all fracture mode (AFM) specimen and modified compact tension shear (MCTS) specimen loaded by split Hopkinson tension bar (SHTB) apparatus is carried out. With a constraint on MCTS specimen on the direction perpendicular to the incident bar, the dynamic stress intensity factor (DSIF) ratio of mode I to mode II remains constant during the loading process. When the constraint is absent, the DSIF ratio varies due to the vibration of clamps and specimen. The DSIF of MCTS specimen under different loading angles is also studied, and the ratio [Formula: see text] approximately equals the tangent of loading angle, which is also proven in experiments. Moreover, numerical results indicate that the influence of the shape of clamps is significantly reduced by applying a constraint on the specimen. It is concluded that AFM specimen is not suitable for dynamic fracture tests owing to over complicated clamps.


2019 ◽  
Vol 9 (22) ◽  
pp. 4944
Author(s):  
Fei Wang ◽  
Meng Wang ◽  
Mohaddeseh Mousavi Nezhad ◽  
Hao Qiu ◽  
Peng Ying ◽  
...  

The objective of this paper is to investigate the complete process of dynamic crack propagation in brittle materials under different loading rates. By using Improved Single Cleavage Semi-Circle (ISCSC) specimens and Split Hopkinson Pressure Bar equipment, experiments were conducted, with the fracture phenomenon and crack propagation of tight sandstone investigated. Meanwhile, the process of crack propagation behaviour was simulated. Moreover, with the experimental–numerical method, the crack propagation dynamic stress intensity factor (DSIF) was also calculated. Then, the crack propagation toughness of tight sandstone under different loading rates was investigated and illustrated elaborately. Investigation results demonstrate that ISCSC specimens can achieve the crack arrest position unchanged, and the numerical simulation could effectively deduce the actual crack propagation, as their results were well matched. During crack propagation, the crack propagation DSIF in the whole process increases with the rising loading rate, and so does the crack propagation velocity. Several significant dynamic material parameters of tight sandstone are also given, for engineering reference.


Sign in / Sign up

Export Citation Format

Share Document