PGRDP: Reliability, Delay, and Power-Aware Area Minimization of Large-Scale VLSI Power Grid Network Using Cooperative Coevolution

Author(s):  
Sukanta Dey ◽  
Sukumar Nandi ◽  
Gaurav Trivedi
2011 ◽  
Vol 131 (11) ◽  
pp. 735-738 ◽  
Author(s):  
Tomonobu SENJYU ◽  
Kazuki OGIMI ◽  
Yoshihisa KINJYO ◽  
Hayato YAMAUCHI

Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 146
Author(s):  
Aleksei Vakhnin ◽  
Evgenii Sopov

Modern real-valued optimization problems are complex and high-dimensional, and they are known as “large-scale global optimization (LSGO)” problems. Classic evolutionary algorithms (EAs) perform poorly on this class of problems because of the curse of dimensionality. Cooperative Coevolution (CC) is a high-performed framework for performing the decomposition of large-scale problems into smaller and easier subproblems by grouping objective variables. The efficiency of CC strongly depends on the size of groups and the grouping approach. In this study, an improved CC (iCC) approach for solving LSGO problems has been proposed and investigated. iCC changes the number of variables in subcomponents dynamically during the optimization process. The SHADE algorithm is used as a subcomponent optimizer. We have investigated the performance of iCC-SHADE and CC-SHADE on fifteen problems from the LSGO CEC’13 benchmark set provided by the IEEE Congress of Evolutionary Computation. The results of numerical experiments have shown that iCC-SHADE outperforms, on average, CC-SHADE with a fixed number of subcomponents. Also, we have compared iCC-SHADE with some state-of-the-art LSGO metaheuristics. The experimental results have shown that the proposed algorithm is competitive with other efficient metaheuristics.


2021 ◽  
pp. 0958305X2110148
Author(s):  
Mojtaba Shivaie ◽  
Mohammad Kiani-Moghaddam ◽  
Philip D Weinsier

In this study, a new bilateral equilibrium model was developed for the optimal bidding strategy of both price-taker generation companies (GenCos) and distribution companies (DisCos) that participate in a joint day-ahead energy and reserve electricity market. This model, from a new perspective, simultaneously takes into account such techno-economic-environmental measures as market power, security constraints, and environmental and loss considerations. The mathematical formulation of this new model, therefore, falls into a nonlinear, two-level optimization problem. The upper-level problem maximizes the quadratic profit functions of the GenCos and DisCos under incomplete information and passes the obtained optimal bidding strategies to the lower-level problem that clears a joint day-ahead energy and reserve electricity market. A locational marginal pricing mechanism was also considered for settling the electricity market. To solve this newly developed model, a competent multi-computational-stage, multi-dimensional, multiple-homogeneous enhanced melody search algorithm (MMM-EMSA), referred to as a symphony orchestra search algorithm (SOSA), was employed. Case studies using the IEEE 118-bus test system—a part of the American electrical power grid in the Midwestern U.S.—are provided in this paper in order to illustrate the effectiveness and capability of the model on a large-scale power grid. According to the simulation results, several conclusions can be drawn when comparing the unilateral bidding strategy: the competition among GenCos and DisCos facilitates; the improved performance of the electricity market; mitigation of the polluting atmospheric emission levels; and, the increase in total profits of the GenCos and DisCos.


2008 ◽  
Vol 17 (03) ◽  
pp. 439-446
Author(s):  
HAOHANG SU ◽  
YIMEN ZHANG ◽  
YUMING ZHANG ◽  
JINCAI MAN

An improved method is proposed based on compressed and Krylov-subspace iterative approaches to perform efficient static and transient simulations for large-scale power grid circuits. It is implemented with CG and BiCGStab algorithms and an excellent result has been obtained. Extensive experimental results on large-scale power grid circuits show that the present method is over 200 times faster than SPICE3 and around 10–20 times faster than ICCG method in transient simulations. Furthermore, the presented algorithm saves the memory usage over 95% of SPICE3 and 75% of ICCG method, respectively while the accuracy is not compromised.


Sign in / Sign up

Export Citation Format

Share Document