A Non-invasive Heart Rate Estimation Approach from Photoplethysmography

Author(s):  
Monira Islam ◽  
Trisa Biswas ◽  
Abdul Munem Saad ◽  
Chowdhury Azimul Haque ◽  
Md. Salah Uddin Yusuf
2022 ◽  
Vol 71 ◽  
pp. 103187
Author(s):  
Nafissa Dia ◽  
Julie Fontecave-Jallon ◽  
Mariel Resendiz ◽  
Marie-Caroline Faisant ◽  
Veronique Equy ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5212
Author(s):  
Michał Wilkosz ◽  
Agnieszka Szczęsna

Non-invasive photoplethysmography (PPG) technology was developed to track heart rate during physical activity under free-living conditions. Automated analysis of PPG has made it useful in both clinical and non-clinical applications. Because of their generalization capabilities, deep learning methods can be a major direction in the search for a heart rate estimation solution based on signals from wearable devices. A novel multi-headed convolutional neural network model enriched with long short-term memory cells (MH Conv-LSTM DeepPPG) was proposed for the estimation of heart rate based on signals measured by a wrist-worn wearable device, such as PPG and acceleration signals. For the PPG-DaLiA dataset, the proposed solution improves the performance of previously proposed methods. An experimental approach was used to develop the final network architecture. The average mean absolute error (MAE) of the final solution was 6.28 bpm and Pearson’s correlation coefficient between the estimated and true heart rate values was 0.85.


2017 ◽  
Vol 64 (12) ◽  
pp. 2793-2802 ◽  
Author(s):  
Fernando Andreotti ◽  
Felix Grasser ◽  
Hagen Malberg ◽  
Sebastian Zaunseder

2017 ◽  
Vol 11 (3) ◽  
pp. 487-496 ◽  
Author(s):  
Venkata Rajesh Pamula ◽  
Jose Manuel Valero-Sarmiento ◽  
Long Yan ◽  
Alper Bozkurt ◽  
Chris Van Hoof ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document