Functional Programming Patterns in JavaScript

Author(s):  
Alexander Sobolev ◽  
Sergey Zykov
2021 ◽  
Vol 5 (OOPSLA) ◽  
pp. 1-32
Author(s):  
Yuyan Bao ◽  
Guannan Wei ◽  
Oliver Bračevac ◽  
Yuxuan Jiang ◽  
Qiyang He ◽  
...  

Ownership type systems, based on the idea of enforcing unique access paths, have been primarily focused on objects and top-level classes. However, existing models do not as readily reflect the finer aspects of nested lexical scopes, capturing, or escaping closures in higher-order functional programming patterns, which are increasingly adopted even in mainstream object-oriented languages. We present a new type system, λ * , which enables expressive ownership-style reasoning across higher-order functions. It tracks sharing and separation through reachability sets, and layers additional mechanisms for selectively enforcing uniqueness on top of it. Based on reachability sets, we extend the type system with an expressive flow-sensitive effect system, which enables flavors of move semantics and ownership transfer. In addition, we present several case studies and extensions, including applications to capabilities for algebraic effects, one-shot continuations, and safe parallelization.


Author(s):  
Tran Thanh Luong ◽  
Le My Canh

JavaScript has become more and more popular in recent years because its wealthy features as being dynamic, interpreted and object-oriented with first-class functions. Furthermore, JavaScript is designed with event-driven and I/O non-blocking model that boosts the performance of overall application especially in the case of Node.js. To take advantage of these characteristics, many design patterns that implement asynchronous programming for JavaScript were proposed. However, choosing a right pattern and implementing a good asynchronous source code is a challenge and thus easily lead into less robust application and low quality source code. Extended from our previous works on exception handling code smells in JavaScript and exception handling code smells in JavaScript asynchronous programming with promise, this research aims at studying the impact of three JavaScript asynchronous programming patterns on quality of source code and application.


Author(s):  
Norihiro Yamada ◽  
Samson Abramsky

Abstract The present work achieves a mathematical, in particular syntax-independent, formulation of dynamics and intensionality of computation in terms of games and strategies. Specifically, we give game semantics of a higher-order programming language that distinguishes programmes with the same value yet different algorithms (or intensionality) and the hiding operation on strategies that precisely corresponds to the (small-step) operational semantics (or dynamics) of the language. Categorically, our games and strategies give rise to a cartesian closed bicategory, and our game semantics forms an instance of a bicategorical generalisation of the standard interpretation of functional programming languages in cartesian closed categories. This work is intended to be a step towards a mathematical foundation of intensional and dynamic aspects of logic and computation; it should be applicable to a wide range of logics and computations.


2000 ◽  
Vol 32 (1) ◽  
pp. 180-184 ◽  
Author(s):  
Scott Vandenberg ◽  
Michael Wollowski

Sign in / Sign up

Export Citation Format

Share Document