Modeling of Lithodynamic Processes in the Area of a Large Navigation Channel

APAC 2019 ◽  
2019 ◽  
pp. 441-447
Author(s):  
Izmail Kantarzhi ◽  
Igor Leont’yev ◽  
Ghinwa Hadla
Keyword(s):  
2006 ◽  
Author(s):  
David D. Abraham ◽  
Mark A. Cowan ◽  
Jon S. Hendrickson ◽  
William M. Katzenmeyer ◽  
Kevin J. Landwhr ◽  
...  

1981 ◽  
Author(s):  
COASTAL & HYDRAULICS LAB
Keyword(s):  

1984 ◽  
Vol 16 (3-4) ◽  
pp. 525-532
Author(s):  
E J Pullen ◽  
P L Knutson ◽  
A K Hurme

The Coastal Engineering Research Center at Fort Belvoir, Virginia, is responsible for research that supports the U.S. Army Corps of Engineers' Civil Works program. This research involves coastal navigation, channel design and maintenance, storm flooding, shore erosion control, and coastal ecology. The ecology research is focused on two major areas: (1) use of coastal vegetation for engineering purposes and (2) effects of coastal engineering activities on the biological environment. The objectives and accomplishments of the ecology research are discussed and specific examples of field guidance are presented.


2012 ◽  
Vol 610-613 ◽  
pp. 1237-1241
Author(s):  
Jie Gu ◽  
Wei Chen ◽  
Xin Qin ◽  
Dan Qing Ma ◽  
Xiao Li Wang ◽  
...  

At present, the upper reach of the Deepwater Navigation Channel is silted heavily, which brings negative influences on navigation. A two-dimensional numerical model is set up to simulate the hydrodynamics of the Changjiang River Estuary with Delft3D-FLOW in this paper. This model has been validated with the observed tidal level, flow velocity magnitude and direction, and the computed results agree well with the observed data, which also shows the model can well simulate the hydrodynamics of the Changjiang River Estuary caused by the Deepwater Navigation Channel Project. Based on the analysis of computed results, especially the velocity along the South Passage and North Passage, the flood and ebb flow in the Hengsha Passage, and the flow spilt ratio of South Passage and North Passage, it presents that one fundamental reason for the sediment deposition in the upper reach of the Deepwater Navigation Channel is that the velocity along the North Passage is far less than that along South Passage, above all, the velocity in North Passage upstream of the Hengsha Passage is even smaller; another reason is that the flood and ebb flow of Hengsha Passage are large, which weakens the water exchange between the North Passage and South Channel.


Sign in / Sign up

Export Citation Format

Share Document