Adaptive Sliding Mode Trajectory Tracking Control of Quadrotor UAV with Unknown Control Direction

Author(s):  
Lijun Wang ◽  
Wencong Deng ◽  
Jinkun Liu ◽  
Rong Mei
Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3305 ◽  
Author(s):  
Gang Wang ◽  
Chenghui Zhou ◽  
Yu Yu ◽  
Xiaoping Liu

When the wheeled mobile robot (WMR) is required to perform specific tasks in complex environment, i.e., on the forestry, wet, icy ground or on the sharp corner, wheel skidding and slipping inevitably occur during trajectory tracking. To improve the trajectory tracking performance of WMR under unknown skidding and slipping condition, an adaptive sliding mode controller (ASMC) design approach based on the extended state observer (ESO) is presented. The skidding and slipping is regarded as external disturbance. In this paper, the ESO is introduced to estimate the lumped disturbance containing the unknown skidding and slipping, parameter variation, parameter uncertainties, etc. By designing a sliding surface based on the disturbance estimation, an adaptive sliding mode tracking control strategy is developed to attenuate the lumped disturbance. Simulation results show that higher precision tracking and better disturbance rejection of ESO-ASMC is realized for linear and circular trajectory than the ASMC scheme. Besides, experimental results indicate the ESO-ASMC scheme is feasible and effective. Therefore, ESO-ASMC scheme can enhance the energy efficiency for the differentially driven WMR under unknown skidding and slipping condition.


2021 ◽  
Vol 11 (9) ◽  
pp. 3919
Author(s):  
Seung-Hun Han ◽  
Manh Son Tran ◽  
Duc-Thien Tran

This paper is aimed at addressing the tracking control issue for an n-DOF manipulator regardless of unknown friction and unknown control direction. In order to handle the above issues, an adaptive sliding mode control (ASMC) is developed with a Nussbaum function. The sliding mode control (SMC) in the proposed control guarantees the tracking problem and fast responses for the manipulator. Additionally, there are adaptive laws for the robust gain in the SMC to deal with the unknown external disturbance and reduce the chattering effect in the system. In practice, the mistakes in the connection between actuators and drivers, named unknown control direction, cause serious damage to the manipulator. To overcome this issue, the Nussbaum function is multiplied by the ASMC law. A Lyapunov approach is investigated to analyze the stability and robustness of the whole system. Finally, several simulations are implemented on a 3-DOF manipulator and their results are compared with those of the existing controllers to validate the advantages of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document