Human Protein Function Prediction Enhancement Using Decision Tree Based Machine Learning Approach

Author(s):  
Sunny Sharma ◽  
Gurvinder Singh ◽  
Rajinder Singh
2022 ◽  
Author(s):  
Maxat Kulmanov ◽  
Robert Hoehndorf

Motivation: Protein functions are often described using the Gene Ontology (GO) which is an ontology consisting of over 50,000 classes and a large set of formal axioms. Predicting the functions of proteins is one of the key challenges in computational biology and a variety of machine learning methods have been developed for this purpose. However, these methods usually require significant amount of training data and cannot make predictions for GO classes which have only few or no experimental annotations. Results: We developed DeepGOZero, a machine learning model which improves predictions for functions with no or only a small number of annotations. To achieve this goal, we rely on a model-theoretic approach for learning ontology embeddings and combine it with neural networks for protein function prediction. DeepGOZero can exploit formal axioms in the GO to make zero-shot predictions, i.e., predict protein functions even if not a single protein in the training phase was associated with that function. Furthermore, the zero-shot prediction method employed by DeepGOZero is generic and can be applied whenever associations with ontology classes need to be predicted. Availability: http://github.com/bio-ontology-research-group/deepgozero


Author(s):  
Alamelu Manghai T. M ◽  
Jegadeeshwaran R

Vibration-based continuous monitoring system for fault diagnosis of automobile hydraulic brake system is presented in this study. This study uses a machine learning approach for the fault diagnosis study. A hydraulic brake system test rig was fabricated. The vibration signals were acquired from the brake system under different simulated fault conditions using a piezoelectric transducer. The histogram features were extracted from the acquired vibration signals. The feature selection process was carried out using a decision tree. The selected features were classified using fuzzy unordered rule induction algorithm ( FURIA ) and Repeated Incremental Pruning to Produce Error Reduction ( RIPPER ) algorithm. The classification results of both algorithms for fault diagnosis of a hydraulic brake system were presented. Compared to RIPPER and J48 decision tree, the FURIA performs better and produced 98.73 % as the classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document