Thermo-Hydraulic Performance of Solar Air Heater Duct Provided with Conical Protrusion Rib Roughnesses

Author(s):  
Tabish Alam ◽  
Ashok Kumar ◽  
Nagesh B. Balam
Green ◽  
2011 ◽  
Vol 1 (4) ◽  
Author(s):  
Anil K. Patil ◽  
J. S. Saini ◽  
K. Kumar

AbstractApplication of artificial roughness on underside of absorber surface has been found to be effective technique to improve thermo hydraulic performance of solar air heaters. In progression to the previous researches, the present study discloses the effect of broken V-rib roughness combined with staggered ribs on heat transfer and friction in a flow through artificially roughened solar air heater duct. The experimentations were performed to collect the data on heat transfer and friction by varying the Reynolds number (Re) between 3000 and 17,000, relative gap position (


2016 ◽  
Vol 8 (1) ◽  
pp. 251-256
Author(s):  
V. S. Hans ◽  
R. S. Gill ◽  
Rupinderpal Singh

This experimental study on a solar air heater having absorber plate roughened artificially by providing roughness in the form of arc ribs having gap was carried out in the Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana, India to study the effect of relative roughness pitch on thermal and thermohydraulic performance as well as to compare the performance of arc rib with gap roughened solar air heater with that of continuous arc rib roughened solar air heater. The roughness geometry parameters included relative roughness height of 0.043, angle of attack of 30 degree, relative gap position of 0.80, gap-width equal to the width of the rib and five values of relative roughness pitch ranging from 4 to 12 for flow Reynolds number range of 2000 to 16,000. The Nusselt number and friction factor were found to be more for relative roughness pitch value of 10 as compared to other values of relative roughness pitch. Thermo-hydraulic performance of solar air heaters roughened by arc with gap and continuous arc roughness geometries were found to be 1.91 times and 1.78 times respectively as compared to that of solar air heater having smooth absorber plate due to generation of turbulence in laminar sublayer region. However, improvement in thermo-hydraulic performance of solar air heater roughened by arc with gap geometry over continuous arc rib roughened solar air heater was attributed to generation of a region of turbulence on downstream side of the gap.


Sign in / Sign up

Export Citation Format

Share Document